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I ABSTRACT

!

I Octree Encoding is a solid modeling method designed for the

3 high-speed manipulation, analysis and display of arbitrary

3-D objects. The technique is based on a hierarchical 8-ary

tree or voctree* for object representation.

I Octree Encoding is presented and analyzed along with a

discussion of the major considerations involved in its

development. Techniques for the efficient conversion into

]octrees of convex polyhedra and restricted analytic objects

are presented. Strategies for unrestricted and concave

object conversion are also discussed. Algorithms for the

measurement of object properties (volume, surface area,

center of mass, moment of inertia, segmentation of disjoint

3 parts, number of interior voids and a correlation between two

objects), geometric operations (translation, scaling,

rotation, concatenated geometric operations, nonlinear

operations and perspective transformation) and rotational

I swept volume are developed
1 1i
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1 INTRODUCTION

The ability to model 3-D objects accurately and

efficiently within computerized systems has assumed greatly

increased importance in recent years. Application areas

include computer-aided design (CAD), computer-aided

manufacturing (CAM), robotics, medical imaging,

cinematographic modeling, object recognition, and so on.

Many factors are driving the need for these systems,

including economic forces such as the need for increased

productivity in order to reduce inflation, the shortage of

and increasing cost of skilled labor, the dramatically

increasing (and possible shortage of) energy, and the rapid

improvement in the performance-to-cost ratio for computing

hardware. In manufacturing and other areas, energy costs and

government mandated improvements in safety, efficiency, and

emissions are necessitating new and "smarter" designs within

shorter development cycles. Often much more complex and

sophisticated products are required, increasing the need for

computerized aids to augment or replace traditional manual

methods.

In spite of the need and numerous efforts undertaken, at

the current level of development, advancement in many

application areas is being impeded because effective and

practical object representation schemes and associated

algorithms for real-time manipulation, analysis and display
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are not available. Briefly, generally used techniques have a

limited range of applicability because of shortcomings in two

major areas. First, representation capabilities are not

suf~iciently robust to easily handle the object complexities

required in a realistic environment. Second, manipulation

and display algorithms performing functions such as

interference detection (two or more objects occupying the

same space) and hidden surface removal (necessary for

realistic display) require extremely large numbers of

calculations in practical situations. They usually exhibit

exponential growth (often quadratic unless special steps are

taken) in the number and complexity of the objects. It is

I not believed that near-term progress in hardware technology

will render such schemes practical for the vast majority of

potential applications. Much more efficient data structures

and algorithms are needed.

The basic function of any scheme for representing rigid

solid objects or Solid Modeling System (SMS) is to define

some form of symbol structure to represent solid objects. In

addition, input facilities must be available for creating

objects or converting them from application data structures,

inquiry facilities must be available so that application

algorithms can be developed to analyze and manipulate the

modeled objects and, finally, a method to output objects is

needed for display, storage, and for possible use by other

systems.

2



The inquiry function is of particular importance. It is

believed that SMSs being developed today will form the lower

levels of advanced computerized systems of the future. The

higher levels will incorporate sophisticated artifical

intelligence functions combined with powerful analytical

techniques, both drawing upon vast knowledge structures

containing virtually all information needed to completely or

almost completely automate tasks such as part design, tool

path generation, process planning, optimization, etc. As

such, these lower level facilities will be utilized with a

very high duty cycle and, just as with lower level operating

system procedures, must be made very fast and efficient. In

addition, they must be extremely reliable and completely

automatic. Human intervention to resolve ambiguities

obviously could not be tolerated. In order to be generally

useful, the scheme and associated algorithms must also be

powerful. It should be able to process and analyze all

possible objects that could be created and must not halt or

require unbounded processing time as object complexity

increases. The scheme must be simple (no or few special

cases, for example), transportable to a variety of machines

and environments, and should be general enough to be usable

over a very large domain of applications without

modification.

3



1.1 Existing Schemes

Most commercially available CAD systems do not employ a

true SMS in that 3-D objects are not really modeled. They

are essentially extensions of drafting techniques based on

the use of edges to represent solids in projection. The

determination of what is actually solid and where the

interior and exterior of an object lies is left to human

interpretation. Most cannot reliably remove hidden lines or

generate sectional views automatically.

Rejecting such schemes, existing SMSs have been divided

into the following six categories by Voelcker and Requicha

(1,2]:

(1) Primitive Instancing - families of objects are

defined parametrically. A shape type and a limited set

of parameter values specifies an object.

(2) Spatial Enumeration - an object is represented by the

cubical spatial cells (volume elements or "voxelsu) which

it occupies.

(3) Cell Decomposition - a generalized form of spatial

enumeration in which the disjoint cells are not

necessarily cubical or even identical.

(4) Constructive Solid Geometry (CSG) - objects are

represented as collections of primitive solids (cuboids,

cylinders, etc.). A tree structure is typically used

with branch nodes representing Boolean operations and

4



leaf nodes the primitives.

(5) Sweep Representation - a solid is defined as the

volume swept by a 2-D or 3-D shape as it is translated

along a curve.

(6) Boundary Representction (B-Rep) - objects are

represented by their enclosing surfaces (planes, quadric

surfaces, patches, etc.).

Specific advantages and disadvantages of each have

been tabulated [3] along with a classification of 21 existing

systems. Most use CSG (TIPS, PADL, SYNTHAVISION, etc.) or

Boundary Representation (BUILD, CADD, EUKLID, ROMULUS, etc.).

In a separate study, Baer, Eastman and Henrion [4] have

analyzed and compared 11 popular systems.

1.2 Goal

The goal of this research has been to devise a new SMS

and associated linear growth algorithms in which objects of

abitrary complexity can be encoded, manipulated, analyzed and

displayed interactively in real-time or close to real-time in

parallel, low-cost hardware. Attempts were made to develop

and incorporate improvements over existing systems in as many

of the current problem ai:eas as possible.

A solid modeling scheme called Octree Encoding was

developed (5-71. The technique employs a hierarchical

N-dimensional binary tree (or a (2N)-ary tree) to represent

5



an N-dimensiona! object. For a 3-D object this is an 8-ary

tree or moctree.m
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APPROACH

rhe ultimate goal of this effort has been the actual

ruction of a full-function, real-time (about 1/30 second

nse) solid modeling system to handle any number of

rarily complex objects while operating on relatively

t, low-cost hardware. Conventional solid modeling

,m has assumed these characteristics to be mutually

isive. Levels of performance many orders of magnitude

-er than allowed by existing techniques are needed.

)usly a new approach is required!

The remainder of this section is an ex post facto

apt to rationalize the 4 or 5 years of evolving reasoning

philosophy embodied in the Octree Encoding method. The

nt is also to sketch the paradigm within which the scheme

conceived and nurtured.

The first and perhaps most important step in this

ney was to reject any preconceived ideas about solid

Ling. It was not accepted that CSG or B-Rep was

ously the best approach. The lack of high level

ications on the subject (until recent years) helped in

regard.

In the absence of clear guidelines and direction,

aps the key to conjuring up an approach to such a task is

amutable set of priorities. From beginning to end this

rt has been faithful to the number one priority:

7



high-speed operation. For the first few years the actual

usefulness of the method was open to question but there was

never doubt the functions could be performed at an extremely

high throughput utilizing modest hardware.

The second priority was robustness. This included both

the ability to represent arbitrary objects and a full

complement of analysis, manipulation and display functions.

The third thrust was a general drive for simplicity.

This required, for example, a single representation scheme

for all objects so as to eliminate the quadratic growth in

the number of interfaces between functions and primitives as

functions and primitives are added to a system. From an

implementation point of view, the benefits of simplicity were

most aptly expressed by Gorden Bell et al. [8) of DEC:

"The cheapest and fastest parts of a system are those
that don't exist."

Given these general priorities and preliminary thinking,

a few more strokes in the outline can be sketched in. If

arbitrary objects will be handled (at high-speed, no less!)

the obvious problem must be faced. Arbitrary objects require

arbitrary quantities of storage for representation. They can

easily require infinite storage if all detail is to be

preserved. The approach adopted here is to represent

arbitrary objects to a variable but limited precision. Part

of the philosophical justification for such a decision has

been expressed from a pragmatic viewpoint by Daniel McCracken

8



[93 (although in a different context):

'I suspect that the more precisely you measure
something, the less important it really is.0

CSG schemes handle this dilemma by taking what can be

looked at as the opposite choice. Infinite resolution (for

all practical purposes) is preserved but objects are limited

to primitive analytic shapes or combinations thereof.

The next step is to squarely face the computational

complexity issue. Most existing CAD systems have evolved

from attempts to automate the 2-D drafting function in

engineering. Complexity has not generally been a

consideration because the typical drafting task, such as

generating a fillet, is linear in a very small number of

items. Interactive operation is not difficult to achieve.

The progress of CAD into full 3-D applications has

changed the situation. Operations which involve some form of

interference detection such as collision avoidance and

hidden-surface removal have been found to require very large,

often prohibitively large, computational resources. The

reason for this has not always been well understood or

appreciated.

The root of the problem is a comparison task. Naive

algorithms perform an interference detection operation by

checking for intersection between each possibly relevant pair

of primitives. A combinatorial explosion results because, in

general, the number of pairs grows quadratically in the

9



number of primitives.

Many schemes have been proposed and developed to

alleviate this problem. Most involve some form of spatial

sorting of object or display space before interference

detection is performed. The sorting phase is typically an

O(n log(n)) growth operation except when a radix sort can be

performed such as is used in the typical Z-buffer approach to

hidden surface removal. This is, of course, a vast

improvement over quadratic algorithms but most such schemes

have severe limitations in other areas as a result.

Two additional interference analysis characteristics

should be considered. First, some schemes require a new

sorting before each interference operation. Sorting for

hidden surface removal before each scene generation is an

example. A single pre-sorting for all time is prefered.

Second, some algorithms require all object elements to

be examined for each interference operation. Z-buffer hidden

surface removal is an example. In some cases, algorithm

growth may be linear, but it is linear in the number and

complexity of all objects. A preferred data structure would

require only relevant sections of an object to be evaluated

based on a single pre-sorting for all time. Such a data

structure was developed for this effort.

The philosophical approach adopted for algorithm

development was based on the hierarchical ideas of Clark "i0]

and the sharing of partial calculations that has been proved

10



I
so successful in the Fast-Fourier Transform (FFT). It is the

hierarchical structure into which the problem has been cast

that allows large numbers of low-level calculations to be

eliminated at an early stage when processing typical objects.

The approach to actual implementation adopted for this

effort was based on the current trends in VLSI technology.

It is clear that to maximize the performance-to-cost ratio,

full advantage should be taken of the tremendous improvements

in hardware which have resulted and will no doubt continue to

result from VLSI.

Before proceeding, a popular misconception concerning

increased computing power should be dispelled. The thought

that increasingly powerful hardware at lower cost will allow

inefficient algorithms to become practical is, in general,

wrong. In reality, a great increase will further widen the

performance gap between an inefficient (quadratic growth, for

example) algorithm and an efficient (linear) algorithm.

Thus, computational complexity issues become more, not less

important as technology moves into the VLSI age.

A new trend has been emerging for the implementation of

high-performance systems in recent years. It combines

advanced CAD tools and semi-custom integrated circuits.

Increasingly, the designer will begin a system development by

entering a register level block diagram into a CAD graphics

workstation. After a timing analysis to detect problems such

as race conditions he will be able to simulate system

11



operation. When satisfied, the circuit will automatically be

reduced and a final layer or two of metalization for a

predefined semi-custom chip will be generated (probably

interactively). A working chip will be available a few days

or weeks later.

As this is written, all of these tools are available at

varying levels of usefulness. Semi-custom chips containing

up to 10,000 gate equivalents (2 input NAND) are currently

available. Full custom chips, microcomputers and memory

chips are commonly available at the 60,000 to 70,000

transistor per chip level. Experimental units of up to

almost 500,000 transistors have been fabricated.

The implementation approach is thus to develop

algorithms designed specifically for semi-custom or full

custom VLSI based operation. This decision impacts the

entire design philosophy. Traditional solid modeling systems

tend to be huge,. ever growing, ever changing, software based

packages with complex internal structures. The VLSI based

system, in contrast, must be based on a small number of very

simple, fixed, powerful and extremely reliable algorithms.

They are implemented in hardware and form the primitive lower

level functions in an applied system. Each could be viewed

as a specialized peripheral processor in a conventional

architecture.

During algorithm design, maximum advantage was taken of

the more or less standard techniques that have proved to

12



enhance performance in hardwired digital systems. This

includes extensive use of parallelism and pipelining,

avoidance of iteration, looping or unbounded situations,

balancing of gate delays, asynchronous bus designs, and so

on.

The classical computation vs. memory tradeoff was

generally decided in favor of extensive use of memory

(including virtual) in order to increase perforwance. It is

believed that in the near future the cost of real memory in

most computerized systems will cease to be a major part of

overall cost (one million bytes of semiconductor memory can

be purchased for $3600 at the board level or $640 at the chip

level as this is written with Brannon of Intel predicting

[Computer Decisions, Feb. 1982, p. 12) a price of $50 to

$100 by the end of the 1980s). In an advanced

implementation, a 16H byte real memory, 1G byte secondary

memory and IT byte virtual addressing space is not considered

unreasonable.

The algorithms were designed with what has recently been

popularized as the Oreduced capability machine" concept.

Briefly, this holds that higher performance may be achieved

by redesigning a processor with fewer functions

(instructions) which execute at a much faster rate. The

larger number of instructions required to be executed in the

performance of a task will, hopefully, execute in a shorter

time period.

13



Based on this approach, none of the basic algorithms or

resulting processors were allowed to employ floating-point

numbers or operations. In addition,. neither integer

multiplication nor integer division (other than integer

shifts) were allowed. Legal operations are integer addition

and subtraction, magnitude comparison, shifts, and data

movements such as LOAD, STORE, stack PUSH, stack POP, queue

INSERT, and queue DELETE. These legal operations form a set

that will be called simple arithmetic. These are serious

restrictions but result in faster and simpler processors,

lower cost, shorter gate delays, etc. In hardware, for

example, a fixed shift is essentially free in cost and

processing time because output data lines can be simply

hardwired into a shifted position. It should also be noted

that the per unit cost of a processor may become very

important when multiprocessing is being considered.

Two phases of algorithm operation are defined, setup and

run. In the first phase, a full function general purpose

processor such as a microprocessor accepts the user request.

This could include, for example, view angles in

floating-point degrees. The request is converted into a set

of integer setup and control values that are then loaded into

the appropriate registers in a second, specialized processor.

This processor is a hardwired unit designed to perform a

single SMS operation using only simple arithmetic. In an

operational system many such processors would be employed.

14



In the second phase, the slower full function unit is

essentially idle while the requested operation is performed

on the objects at a very high rate by the specialized

processor. After processing a few calculations may be

allowed on the general purpose machine to place the results

in user format.

Computers have often been viewed as number manipulators.

In reality, they are simply symbol manipulators in which the

manipulations typically correspond to mathematical functions.

The processors envisioned here are also symbol processors.

The symbols are elements of solid objects and the

manipulations are desired solid modeling functions. They

could be looked at as specialized "solid processors" or

"solid engines.3

15



3 DATA STRUCTURE AND PROPERTIES

3.1 Definitions

A ~Qa G(N,E) is a finite, nonempty collection N of

nodes and a set E of unordered pairs of distinct nodes called

edce. Two nodes connected by an edge are adjacent nodes.

If an edge has an associated direction, it is a directe

]. The direction is from the a&U node to the hg" node.

A graph containing only directed edges is a directed graph or

digraph. The number of edges which have a node as their tail

node is the outdecree of that node. The number of edges

which have a node as their head nc~e is the indegre of that

node. A graph which has no paths which originate and end in

the same node is called a li.

A tree is an acyclic directed graph in which all nodes

have indegree 1 except one node, the root, which has indegree

0. Any node which has outdegree 0 is called a terminal node

or leaf. Nodes with outdegree greater than 0 are branch

nodes The level is defined as the distance in edges from

the root. The root is at level 0.

The root is assumed to be at the top of the node

structure and all other nodes exist below the root. All

nodes reachable from a particular node are called the

des nants of that node. All nodes from which a particular

16



node can be reached are the ancestors of that node.

Descendants one level below a node are the children of that

node. The original node is the 2 of the child node.

If a node does not actually exist in a tree but can be

inferred from an existing terminal node which would be (or

will be) one of its ancestors, it is called an i node.

Loosely, operations on a tree which use implied nodes are

said to process the implied tree rather than the actual tree.

Every branch node is a root of one or more subtrees.

The subtrees immediately below a node form a set of disjoint

trees called a forest. The degree of a node is the number of

subtrees that exist for that node. If the outdegree of every

branch node is <- m, the tree is an in-ay. .tr* . If the

outdegree of every branch node is m, the tree is a com~lete

m-ary tree. For a binary tree or a complete binary tree, for

example, m-2.

A positional m-ary tree is an m-ary tree in which the

children have m distinct positions. The position of a node

is indicated by a value from the child number set

(0,1,2,...,mn-i}.

Every node is uniquely identified by a node address

which is a string over the child number set. The root is

represented by the empty string. The node address of a child

is the child number prefixed by the address string of its

parent.

A tree will be called a hierarchical tree if the

17



children of a node are associated with their parent in some

particular relationship.

All objects exist within the universe. It is a finite

section of N-dimensional space defined by N orthogonal axes

and 0<-x(i)<-e where x(i) is a displacement in dimension i,

(x(), x(2),...,x(N)) is a point in the universe, e is the

length of an &gd= of the universe and N is the order of the

universe (number of dimensions). The character IN" will be

reserved for this purpose throughout the report.

Note that all edges of the universe have the same length

forming a square for N-2, a cube for N-3 and an N-dimensional

hypercube for N>3. The origin of the universe is the point

of intersection of the axes. Negative displacements from the

origin are not allowed. The space beyond the universe is the

voi. No object can exist in the void. Any part of an

object moved into the void is annihilated. An a t

universe is one in which one or more adjacent (empty)

universes are added to the 2rimar universe. Augmented

universes are used to facilitate algorithm initialization.

Before encoding, objects are called real objects. They

may be real world objects or a mathmetical description of an

ideal shape. An object encoded in the Octree Encoding format

is known as the encoded object or simply the object.

If a single encoded object is used many times to

generate new, transformed objects, the original object is the

model and the new objects are instnce.

18



An object can have any number of dimensions. A

one-dimensional object is one or more segments of the axis

forming a one-dimensional universe. A 2-D object occupies

area, a 3-D object occupies volume, a 4-D object can be

thought of as occupying spacetime, and so on.

An object is always of the same order as the universe in

which it is defined and is composed of discrete units of

N-dimensional space. All objects in a third order universe

must occupy volume, for example. A 2-D object could not

exist here. The smallest object in such a universe would be

the smallest resolvable unit of space. No object can occupy

a point (zero volume).

Other than this, there are almost no restrictions on

objects. They can be concave as well as convex, have any

number of interior voids, and can be composed of multiple

disjoint parts.

Each object is defined over the entire universe. It has

a property value defined at each point in the universe. For

a typical small object (relative to the universe) most of the

space in the universe has the property of being empty.

An encoded object B is thus defined as a family of

ordered pairs B(k)M(P,E(k)) where P is a finite set of

properties and Ek) is the set of disjoint object elements or

obels which exactly fill the universe at level of resolution

k in a manner described below. Obels are distinguished from

spatial enumeration voxels because they are not uniform in

19
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size and not necessarily three-dimensional.

In Octree Encoding, the obels which constitute an object

are represented by the nodes in a tree structure. The tree

contains all members of the family of objects of increasing

resolution up to some maximum level of resolution. The obel

in space and the node in a tree structure representing it are

generally considered to be synonymous throughout this report.

3.2 Object Representation

Take a positional m-ary complete tree in which each node

represents a section of N-dimensional space. Divide the

section in each dimension represented by each parent into p

equal disjoint segments numbered 0 to p-i. This forms pN

sections of N-dimensional space j(i)(e/p) <- x(i) <=

(j(i)+l)(e/p), j(i)=0,l,2,...,p-1 & i=l,2,...,N where i is

the dimension, x is a displacement from the origin of the

parent und e is the length of an edge of the parent.

The sections of space are the obels of an object and are

represented by the m-pN children of the parent. The root of

the tree represents the universe and contains all

N-dimensional space. The level of the obel is the level of

the corresponding tree.

The child number is defined to be:

20



N
child number - SUM(p '-Is(i)) (3-1)

i-l

ere s(k) is the segment number in the k-th dimension.

ld number set is thus {0,1,2,...,pN-1.

or the remainder of this report, only a value of p=2

t considered. A binary complete tree in each dimension

ierefore be used forming an N-dimensional binary tree

itional m-ary complete tree in which m=2N).

hus, a one-dimensional binary tree is simply a binary

A 2-D binary tree is a quadtree. A 3-D tree has 8

en and will be called an octree. A 4-D tree has 16

en and is a hexadecatree.

hese tree structures are hierarchical because the

: obels represent the identical section of space as the

cen. Thus, the trees as used here should not be

Bed with the more or less standard tree structures used

ta processing to maintain items in a sorted format.

; to the identification problem is the fact that such

Lerarchical structures have also been called "quad

" when representing data items with a double index.

rhis report will only consider terminal nodes which are

ately defined by the corresponding properties. In other

, the space occupied by a terminal node is homogeneous.

=omplex forms are possible but will not be discussed.

rhe binary object property will be used in most of this

t. A terminal node will be either FULL (an "F" node) if

21



the corresponding obel is completely occupied by the object

or EMPTY (an "E" node) if the corresponding obel is

completely disjoint from the object. Branch nodes are

PARTIAL (a "P" node) meaning partially full. It is assumed

that additional properties such as color or texture values,

material type, function, density, surface normals, thermal

conductivity, etc. are simply attached to F nodes. The

algorithms below can be extended to process such trees if an

operation is defined to combine properties for the various

transformations.

When a real object is converted to octree format, branch

nodes at the lowest level must be given a terminal value.

This could be E or F if the obel is less than or greater than

half occupied, respectively. If interference detection or

collision avoidance is needed, the worst case situation is

usually assumed; they are given the value F.

If all of the children of a branch node are terminal

with the same property value, they are unnecessary and should

be eliminated. The parent node is converted to a terminal

node containing the child property. If a tree contains no

such nodes it is a reduced or trimmed tree.

Unreduced trees are sometimes created during algorithm

operation. They are valid and are correctly processed by

most algorithms but cause inefficiency. Versions of

algorithms that generate trees in a depth-first sequence

typically eliminate unnecessary nodes during operation. The
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7
output is a reduced tree. Otherwise a separate reduction

pass through the tree is usually performed.

In specific applications an additional terminal node

type, a tolerance node, is used. In a material removal

operation, for example, they represent the tolerance obiect.

This is the space within the required tolerance of the

surface of the minimum desired object which can be optionally

removed. Tolerance nodes are handled in a special manner by

processing algorithms. They can be used as E nodes to obtain

the minimum object, as F nodes for the maximum object or

locally converted to whichever would result in the greater

node reduction for the minimum storage object (assuming

tolerance information no longer needed).

It should be noted that the location of any obel in the

un erse is known very accurately. In fact, it is known

exactly. Likewise, the distance between any two obels in the

universe is also precisely known. They are at fixed

locations in space. The ambiguity existing as a function of

tree level is in the location of the surface of the object

within an obel. This distinction can be important, for

example, when two parts of an object must be in very accurate

alignment over a great distance. It is not necessary to

maintain a precise representation between the parts.

Figure 3.1 is an example of a four level quadtree. Note

child and vertex labeling conventions. They are selected to

facilitate extraction of dimensional informatior based on bit
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position. A three level octree object is shown in Figure

3.2.

The node address identifies a particular node and also

locates the section of space represented by the node.

A node address in a 1-D tree is a binary string. The

number of bits is equal to the level of the node. The value

is the number of the section of the I-D universe occupied by

the node, numbered from 0 at the origin to 2n_1 where n is

the level. In 2-D, the address will be a string of single

digit quaternary numbers and in 3-D, octal numbers. The

section of a higher order universe can be likewise determined

by independently considering the individual bit for each

dimension in the child number values. On occasion a node is

identified by its level and the decimal equivalent of the

binary value of its address string.

3.3 Node Requirements

The actual number of nodes required to represent an

object is a function of the size and shape of the object, its

position and orientation when digitized, the level of

resolution, etc. Of particular significance is the result

that the surface area of a 3-D object sets an upper bound on

the memory required.

Assertion 3.1: For a 3-D connected object, the number

of nodes required for octree representation is on the order
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of the product of the surface area of the object and the

inverse of the square of the resolution.

Proof: A function g(n) is defined to be on the order of

f(n) or O(f(n)) if there exists a constant c such that g(n)

<- cf(n) for all but some finite (possibly empty) set of

non-negative values for n.

Consider a 3-dimensional universe defined to level n.

Without loss of generality, the volume of the universe is

defined to be 1. Resolution at level n will be defined as

the edge size, e, of an obel at level n or e=i/2n. The

resolution of the object, r, is the edge size at the lowest

level or r-l/2m .  Consider the minimum surface object which

intersects 8 obels (any level) and continues on to touch a

ninth. It intersects 8 obels at and around the common point

at which all 8 touch and continues along the entire length of

an edge. It will be a linear run of minimum level obels for

a distance e and has a surface area of 4re+2r2. Por an

object to actually intersect all 9, it must be larger than

this and have a larger surface area.

Let S be the surface of an object. Let k be the number

of cubes at level n which could be required to represent the

object.

In a worst case situation, the surface area would cover

a maximum length run of minimum level obels, which sets a

limit on the number of obels at level n which can be

intersected:
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k < S(S/(4re+2r')+l)

The 1 accounts for (actually, more than accounts for)

the four obels which could be intersected along with obel 9

at the far end of the run.

k < 8(S/4re+l) - 2S/re+8

Let C be the total number of obels or nodes required to

represent an object:

m
C < SUM(2S/re+8)

n-O

C < (2S/r)SUM(2 n ) + 8(SUM(1)
n=O n-0

C < (2S/r)(2i+l-l)+8(m+l) - (2S/r)2m-2S/r+8m+8

C < 4Sr-2-2Sr-1 +8m+8 or C is O(Sr - 2 )

3.4 Neighbors

The points in and on an obel are defined by a range of

values in each dimension. A restricted set of points is

defined if the coordinate values in one or more dimensions

are fixed. Types of restricted sets are defined by the

number of dimensions restricted for an N-dimensional obel as

follows:
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Dimensions Restricted T Dimensionality

N Vertex 0 (point)
N>-2 N-I Edge I (line)
N>-3 N-2 Face 2 (plane)
N>-4 N-3 Prime 3

The fourth type, prime, is only defined for a 4-D

universe and contains 3-D space. It could be a 3-D object at

a specific time or two spatial dimensions and time restricted

in the third spatial dimension.

For each dimension there are two values on the surface

of the obel. The number of surface subsets of each type is

the product of the number of cases of restricted values (2n

where n is the number of restricted dimensions) and the

number of combinations of n out of N dimensions

(NI/(nl(N-n)L)). They are tabulated as follows:

n 1-D 2- 3- 4-

N 2 4 8 16 Vertex
N-1 4 12 32 Edge
N-2 6 24 Face
N-3 8 Prime

Totals 2 8 26 80

The total number of such subsets is listed. It is 3 1

or the number of possible cases in each dimension (two fixed

values plus the "not restricted" case) raised to the number

of dimensions less the one case of no restriction in any

dimension.

Neighbors are defined as obels that share one or more

surface subsets. They are vertex, edge, face or prime

neighbors depending on the shared subset. Note that the
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types are inclusive as the number of shared dimensions

increases. For example, an edge neighbor is also a vertex

neighbor and a face neighbor is also an edge and vertex

neighbor.

3.5 Complexity Metric

An important item that is generally lacking in the field

of 3-D solid modeling is a measure of object complexity. It

is difficult to study a situation analytically when

quantitative measures are not available. Intuitively, the

measure of the complexity of an object should in some sense

be related to the amount of information required to represent

the object.

The measure of object complexity used here is the number

of nodes in its octree [6]. The actual complexity value will

depend on location and orientation. If needed, objects could

be normalized by translation so that they touch the three

sides of the universe that intersect the origin. If there is

no preferred object orientation, an average could be

calculated for the object at uniformly distributed rotation

angles. Alternately, the minimum (or maximum) number of

nodes could be used.

An advantage is the ease of calculation. A complexity

value can be generated automatically for any object with

existing algorithms without manual intervention.
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In the remainder of this report the letter "C" will be

reserved to represent the node count (any type) in an

object's reduced tree. The value of C is the sum of the

number of branch nodes, B, and leaf nodes, L. The following

relationships hold:

C a B + L - BU2N) + 1 (3-2)

- B a (C-)2 -  0 L(2 -N)C J (3-3)

L f C-(C-1)2N - (1-2N)C+2
- N - r(1-2N)c 1 (3-4)

A tabulation by N is:

B a L C/2J LC/4J LC/SJ LC/16 J

L - r C/2 I r3C/41 r7C/81 rl5C/161

Within the count of leaf nodes, the number of nodes with

a value of E (or F) can range from 1 to L-1.

3.6 Storage Requirements

A minimum usable scheme requires two types of data items

per node, a property value and pointers to its children (if a

branch node). Additional data items which could be used are

parent pointers, multiple property values, average subtree

properties, sibling pointers, object feature pointers,

pointers into application data structures, etc.

Normally a two bit field is used to encode the 3 node

29



values (E, F and P) requiring 2C bits or C4 bytes for an

object. This can be reduced by allowing for a single bit

value. For example, a 0 bit could represent an E node while

a 1 bit indicates the presence of a second bit to d -inguish

between F and P nodes. Since branch nodes will aiways b'e

less than one quarter of the nodes for N >= 2, a 2 tit ccce

is used for P nodes. The choice of value for single biL

encoding can be fixed or could be selected to minimize

storage use. If fixed, 3-D storage will range from about

9C/8 bits (0.14C bytes) to about 2C bits (0.25C bytes). When

the optimum 3-D correspondance is selected, the worst case is

reduced to about 25C/16 bits (0.2C bytes). This corresponds

to a savings of approximately 20% minimum to 44% maximum.

More sophisticated encodings based on higher order statistics

are possible but will not be discussed.

Conceptually, each branch node of an octree has 8

storage fields for child pointers when stored in linked

format. At implementation time, however, a single location

will suffice because it is a complete tree. The children can

be located in blocks of 8. A single pointer to the block

together with an offset (0 to 7) will uniquely locate each

child. In practice a single word of storage (typically 32

bits) per node can hold both the value field and pointer

field.

Memory requirements can be substantially reduced if node

storage is sequentially allocated. Using a heap-like storage
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format, the position of a value in a string indicates its

tree address. Two bits per node (or less) is sufficient.

The allocation can be breadth-first or depth-first. The

major disadvantage is that, similar to a magnetic tape, all

earlier nodes must be read before a desired node can be

located. It is considerably slower for selective depth

searches.

Parent pointers are probably not necessary because in

any real application the number of levels is limited. With a

32 level octree, for example, objects could be represented to

a resolution of 0.001 inch in a universe enclosing 311,482.8

cubic miles. In such a situation, depth-first traversal

algorithms could keep parent pointers in a small stack.

In some applications subtrees can be shared within an

object or between objects. Pointers are simply allowed to

point to the same node (root of the shared subtree). This

may, however, greatly complicate object modification and

deletion.
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4 TOOLS AND ALGORITHMS

The intent of this section is to develop a body of

"tools" to be employed by algorithms in the performance of

sub-functions within the implementation constraints (simple

arithmetic, easy VLSI implementation, etc.). This will be a

"bag of tricks" from which specific solutions will be drawn

as the need arises. These tools perform specific, not

general, functions but will, hopefully, be broadly useful

over many algorithms. Lower level tools will be combined to

form higher level ones to implement more sophisticated

functions. At the lowest level tools consist of the simple

arithmetic operations. To the system implementor the tools

will correspond to specific hardware subsystems to be used in

the construction of special purpose hardware processors.

In order to motivate tool development, their

introduction will be placed within the context of solutions

to increasingly difficult modeling system functions. In most

cases, solutions to the 2-D (or l-D) problem will be

presented first for clarity, followed- by the extension to

3-D.
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4.1 Traversal Strategy

In general, implementation details will be avoided. It

should be noted, however, that two catagories of tree

traversal sequences, depth-first and breadth-first, are

possible. They correspond to two strategies for attacking

problems. A depth-first algorithm generally traverses a tree

downward from parent to child, returning to the parent when

all lower nodes have been processed. Breadth-first traversal

processes all nodes at one level before working at the next

lower level.

Depth-first traversal tends to be used when local

information is required while breadth-first is employed when

global information is needed. For example, determing if a

point is interior to an object requires local information in

the vicinity of the point. A depth-first discent to the obel

containing the point would be used. On the other hand,

determining if a spatial interference exists between two

objects (but not the actual intersection) would typically

call for a breadth-first traversal in the hope that

interference between two solid obels would quickly be

detected (or determined not to occur) at a high level.

A depth-first algorithm is generally spatially oriented.

It has advantages when an overall spatial ordering is needed

such as display with hidden surfaces removed. A

breadth-first algorithm is typically more object oriented.
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The entire object is processed at increasing levels of

fidelity. Many objects can be in process with results at a

high level (low resolution) becoming available before the

lower level detail of objects are even accessed in memory.

In an application, tree traversal is not necessarily

restricted to either depth-first or breadth-first but system

performance may be optimized by allocating memory according

to the predominant traversal strategy. Depth-first

operations typically use a stack either directly or via

reentrant code to maintain tree location. Breadth-first

information is passed from one level to the next in a queue.

The depth of the stack is usually quite modest while the

length of the queue can be very great at the lower levels of

complex objects if few high level nodes have been eliminated

from consideration.

4.2 Object Generation

One of the first tasks to be addressed when considering

an implementation of a SMS based on Octree Encoding is object

generation or more specifically, conversion from application

representations such as CSG and B-rep into the octree form.

The user entry of a string of node values is obviously not an

effective entry scheme. It is expected that the high-speed

conversion from various high level application formats will

be required.
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Perhaps the most obvious method is the brute force use

iatial enumeration. A full tree is first constructed

all possible leaf nodes at the desired lowest level.

input objects are processed with the leaf nodes

tsponding to the interior voxels marked F. As noted by

Lcha 12] conversion from any popular SMS format to

ial enumeration is straightforward. Properties could

be attached at this time. The tree is then simply

ced.

For a full tree stored sequentially, the storage address

et (root at location 0) for the level n node at location

X21..., XN) where each dimension coordinate ranges from 0

In-1 will be given by:

n-1 Ni (4-1)
offset - SUM (2 + SUM (2Ni+j-BIT(Xi))) (4-1)

i=0 j-l

where BIT(X,k) is the value (0 or 1) of bit location k

! least significant bit is location 0) of variable X.

The obvious problem for most non-trivial cases is the

t memory requirement for spatial enumeration storage

3 
n) where n is the lowest level) and the associated

:essing time (all leaves must be accessed at least once*.

ishing in a virtual memory environment could be a serious

Alem, depending on the spatial randomness of solid voxel

trmination during object conversion. To conserve memory,

:iple passes through the object could be performed for

.ions of the universe, followed by union operations.
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A variation is to generate complete 2-D quadtrees

representing orthogonal slices through the universe. The

corresponding planes through the input objects are then

examined. Interior squares are marked F. The result is

essentially a binary image of a slice through the universe.

A simple algorithm then converts the quadtree to an octree

(voxels on a plane). Multiple slices are then unioned. All

possible obels in the universe are still accessed but the

memory required may be substantially reduced. This method

was used to generate the skull octree objects from 2-D CT

images as presented below.

For most applications, an object generation algorithm

which requires the processing of all possible minimum level

voxels in the universe for each object is unacceptable. In

addition to the expense in time and memory, it runs counter

to a general strategy of converting from application format

to octree format in a top-down manner on a demand basis.

More efficient algorithms are needed.

One could store octree representations for generic

shapes to a very high precision in virtual space and perform

linear transformations upon them at high speed. In

situations such as tolerance checking a very high precision

representation of a small part of the object surface may be

required. The storage required to maintain such precision

over the entire surface of all objects could be prohibitive.

A proposed solution is the use of specialized software
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or hardware processors called octree Qenerators. As shown in

Figure 4.1 they would be preloaded with the object

parameters. The user of the data, the octree processor,

would request node values. The generator maintains the state

of the traversal in an associated stack or queue.

In order to allow random traversal of the tree, the

request could specify a particular connected node relative to

the current node. For a depth-first traversal, a request

would specify the parent or a child of the current node. For

breadth-first, in addition to a request for the next node, it

would be useful to allow a request to delete a current P node

if it and its subtree were found to be unneeded. Its token

is simply not inserted into the queue. At lower levels, the

subtree would be unknown and therefore not generated.

From a complexity viewpoint, the efficiency of an octree

generator is a function of the false-P rate. This is the

fraction of nodes marked P that will have a value of E or F

after reduction. This is not considered to be an error

because the obel has not been incorrectly determined. The

calculation of the final value for the node has simply been

postponed, requiring additional work.

If the false-P rate is zero, all nodes are correctly

determined the first time and the tree as generated is

identical to the reduced tree. If the obel values can be

determined in constant time, the computations grow linearly

with object complexity (C). If, for a typical user request,
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only parts of a tree are needed, computatioi-s could be

expected to be linear (in some sense) in the complexity of

the specific case.

Conceptually, an unsorted input object can be converted

into a sorted octree in linear time, rather than O(n log (n))

or worse time because a radix type sort over a finite

"alphabet" (the obel locations) is involved. The worse than

linear growth of typical sorting operations is caused when

comparisons between elements is required. None are required

here.

Something of a worst case example of a high false-P rate

(approaching 1.0) algorithm would be the subdivision of all

obels to the lowest level before status determination. The

above spatial enumeration conversion to octree is an example.

Since the computations are on the order of the volume of the

universe, 8 (levelsl) this is obviously unacceptable in most

situations. Thus, a zero or very low false-P rate (ie., the

correct determination of final node value in all or almost

all cases) is highly desirable.

The basic octree generation operation is to compare a

test obel and the object being converted. The result is one

of the 3 status values, E if Obel n Object - 0, F if Obel n

Object - Obel or P otherwise.

The octree generation strategy is as follows. Beginning

with the root node the values of test obels in the output

octree object are determined by comparison to the input
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(real) object. A node in the octree is created with this

value. In most situations of interest this can be performed

in constant time. E and F nodes are terminal and no longer

considered. P nodes are subdivided with the corresponding

children used as later test obels.

The first algorithm tool to be developed is the

calculation of child vertex coordinates from the parent

values. As shown in Figure 4.2 for 2-D, it is easily

accomplished with additions and shifts (divide by 2). The

3-D or N-D equivalent is obvious.

For depth-first generation, subdivision is performed

immediately with parent information saved in a stack. For

breadth-first, all P nodes at a level are tested as they are

deleted from the queue. Partial children are inserted into

the queue for subdivision at the next lower level.

It may be convenient to consider the input objects as

existing in an infinite "super universe* which encloses the

octree universe. In this view, real objects can be infinite

in length or enclose infinite space or exist beyond or

outside of the octree universe before conversion. Thus, it

is entirely legitimate for an input object to generate a

single empty or full node if it is disjoint from or encloses

the octree universe, respectively.
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4.2.1 Orthogonal Blocks

The development of object generation tools will begin

with a very simple case, a 3-D block (rectangular

parallelepiped) with faces perpendicular to the major axes.

The algorithm could also be used in 2-D for orthogonal

rectangles or on 4-D (or higher) "hyperblocks." The basic

tools developed here are very simple, but provide a

foundation and framework for later tools. They will be

applied repeately to more advanced functions.

A typical case is illustrated in Figure 4.3. The

minumum and maximum coordinates in each dimension are noted.

Three test obels with the three status values are shown.

Because the bounding planes and axes are orthogonal, the

status determination can be decomposed into an independent

comparison in each dimension. The projections of the test

obel and object on an axis is shown in Figure 4.4. The

projections are completely defined by their minimum and

maximum values.

The comparison of the two projections can be analyzed by

first noting that two coordinates and two projections results

in four comparisons, ObelMin to Object-Max, ObelMax to

Object-Min, Obel_Max to ObjectMax, and ObelMin to

ObjectMin. Each magnitude comparison can result in one of 3

determinations; the first value is less than, equal to or

greater than the second. There are 34 or 81 combinations.
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Two constraints reduce the possible combinations. First, the

obel occupies space. ObelMin must therefore be less than

ObelMax. Second, if the object is required to occupy space

in at least the *super universe" ObjectMin must be less than

ObjectMax. The 13 possible situations which remain are

tabulated and illustrated in Figure 4.5.

If no section of the axis is contained in both

projections, they are disjoint. A single point is not

considered a section of the axis. If a single point is

shared, the projections touch. Such cases are disjoint but

* are separately defined for possible future use.

If the projection of the obel is completely contained in

the object projection, it is covered. If a section is

contained in both but the obel is not covered, it will be

called an ovelap case. The three cases, disjoint, covered

and overlap are defined to be mutually exclusive. Note that

certain situations only occur when the length of the

projections are restricted.

The various situations can be catagorized with four or

fewer magnitude comparisons (for each dimension) as follows:

if OBEL-MAX<-OBJECTMIN or OBELMIN>-OBJECT_MAX
then CASE<-'DISJOINT' else
if OBELMIN>-OBJECT_MIN and OBELMAX<uOBJECTjAX
then CASE<-'COVERED' else CASE<-'OVERLAP'

In some restricted situations, not all comparisons need

be performed. For example, if the obel projection is larger

than that of the object, it cannot be covered. Overlap has
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been determined after the first set of two comparisons.

The status of the obel can now be determined as a

function of the projection cases.

Assertion 4.1: If the test obel projection and object

projection are disjoint in one or more dimensions, the obel

and the object do not intersect.

proof: Select a dimension in which the projections are

disjoint. For a non-touching situation, there is no

coordinate value in this dimension contained in the

projections of both the obel and the object. But any point

of intersection must have a coordinate in this dimension and

it must be in both projections. Therefore, no such

intersection point can exist.

For a situation in which the projections touch, only a

single coordinate value in this dimension is common.

Therefore, the space occupied by the intersection will have a

dimensionality at least one less than that of the universe, a

situation of no intersection, by definition. O.E.D.

Assertion 4.2: If, for all dimensions, the projections

of the test obel and object overlap or the test obel

projection is covered, the obel and the object intersect.

Proof: An algorithm is sufficient. For each dimension,

select the minimum and maximum coodinate values which reside

in both projections. Taken over all dimensions, they specify

a section of space of the same dimensionality as the universe

residing in both the test obel and the object. O.E.D.
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Assertion 4.3: If, in at least one dimension, the test

obel projection is not covered by the object projection the

test obel is not enclosed.

Proof: Select a dimension in which the test obel

projection is not covered by the object projection. Select a

coordinate which is in the test obel projection but not in

the object projection. In the other dimensions, select any

coordinate within the test obel projection. The coordinates

define a point which is in the test obel but not in the

object. The test obel is therefore not enclosed by the

object (Obel n Object 0 Obel). O

Assertion 4.4: If, for all dimensions, the projection

of the object covers the projection of the test obel, the

test obel is enclosed by the object.

Proof: The coordinates of any point in the test obel

are clearly also the coordinates of a point in the object.

The test obel is therefore enclosed (Obel Object - Obel).

A determination of node status as a function of the set

of cases for the individual dimensions is now possible. If

the obel and object are disjoint in any dimension, there is

no intersection and the node is marked E. If the obel is

covered by the object in all dimensions, the obel is covered

by the object. The node is marked F. Otherwise, there is

either overlap or covering in all dimensions with at least

one being overlap. The obel intersects but is not enclosed
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by the object, generating a P node.

This is summarized as follows:

if CASE - 'DISJOINT' in any dimension
then STATUS <- 'E' else
if CASE - 'COVERED' in all dimensions
then STATUS <- 'F' else STATUS <- 'P.

All of the tools necessary to generate an octree for a

block are now available. Beginning with the root, the nodes

are generated by determining the status values and continuing

the ambiguous ones (P nodes) to lower levels. The minimum

and maximum coordinates in each dimension of the children are

calculated from the parent nodes and compared to the

coordinates of the block (fixed values for a specific block).

The node status value is generated as a predicate combination

of the results of the individual dimensional comparisons.

Since there are no cases in which an empty or enclosed

node will be given a P value, the false-P rate will be 0.

The reduced tree is generated.

A gage of performance can be made by determing the

number of arithmetic operations required. An add/shift

operation is used to generate child vertices and a magnitude

comparison for status determination.

One add/shift is required for each dimension for each

obel subdivision. It is not possible to eliminate the

calculation in any dimension. All are required. This is

shown by noting that no branch node will generate all E

valued children. It would be an unreduced E node itself,
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indicating a false-P case. Thus a P or F node must be among

the children, requiring, as can be noted from the above

algorithm, a non-disjoint (covered or overlap) case in all

dimensions. This, in turn requires that all minimum and

maximum obel vertex coordinate values be tested for all

dimensions. A final observation is that either the minimum

or maximum value is the parent average generated by the

add/shift operation. Thus, N are necessary for each branch

node requiring (C-1)(N/2N) operations.

The number of magnitude comparisons necessary depends on

the specific object. A minimum and maximum will be

determined. For each dimension one or two operations are

required for a disjoint case and four for overlap or covered.

For a final status value of P or F, an overlap or covered

case is required for all dimensions, or 4N comparisons. For

a status value of E, however, a disjoint case in a single

dimension is sufficient, requiring a minimum of one

operation. In any case, less than 4N will be required.

Thus, a minumum of C magnitude comparisons are required

(a single node tree with a root value of E) with a maximum of

4NC (a single node tree with a root value of F).

45



4.2.2 Convex Objects

The generation of convex objects is more difficult than

blocks because the dimensions cannot, in general, be analyzed

independently. The simplicity and efficiency of the

techniques of the last section will be used, however, with an

orthogonal "bounding box" enclosing the object to perform a

quick and inexpensive elimination of test obels clearly

outside the vicinity of the object.

The basic low level operation in convex object

generation is determining if a particular vertex point of a

test obel is interior or exterior to the object. If the

object is a convex polyhedron, the surface is described by a

set of planar faces each of the form:

Ax + By + Cz + D = 0 (4-2)

Each plane divides the universe into two half-spaces.

The half-space containing the object will be called the

positive half-space; the other is the negative half-space.

The normal to the plane is defined to be in the direction of

the negative half-space (away from the object). For points

not on the plane (4-2) will evaluate to a positive or

negative value depending on the half-space.

A simple substitution of the coordinates of the vertex

point determines the location to be on the plane or in one of

the half-spaces. Note that a positive evaluation value does
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not necessarily indicate the positive half-space. Also, a

point in the positive half-space is not necessarily within

the object. The face plane is the entire plane while the

face is a segment of the face plane.

If multiplications are not allowed, the components of

(4-2) can be calculated for obel vertices by averaging from

the parent components. A set of components for each vertex

point in each dimension for each plane would need to be

maintained. In 3-D this requires 24 values per plane.

Alternately, the signed perpendicular distance from the

vertices of the universe to the plane can be calculated from:

d = (Ax+By+Cz+D)/((At+B'+C')(1/2)) (4-3)

The distance value for a new vertex in a child obel is

the average of the two parent vertices defining the edge

containing the new vertex. The sign of the distance

indicates the half-space. The new distances are calculated

as follows:

(D_VAL(AND(CHILD,VERT))+DVAL(OR(CHILD,VERT)))/2 (4-4)

where CHILD is the child number of the new obel, VERT is

the number of the desired vertex of the new obel and D_VAL(n)

is the distance of parent vertex number n.

For each plane, 8 values are used. In practice, only

one distance value need be kept. The remaining ones can be

generated by adding an offset from a precomputed table.

From the definition of convex polyhedra, if a point is
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in the positive half-space of All face planes, then it is

interior to the object. If it is in the negative half-plane

of A face plane, then it is exterior to the object.

Otherwise, the point lies on the surface of the object (on

one or possibly more faces). A surface point touches the

object but is not considered to be interior to the object.

Thus, for polyhedral objects, an obel vertex point can

be determined to be interior, exterior or on the surface

using simple arithmetic operations without considering the

location of the faces on the face planes or the actual

intersections of face planes.

For convex objects defined by an analytic surface the

location of the point relative to the object can often be

easily determined by evaluating the defining expression for

the surface. For example, an evaluation of x2 + yz + z' - Rz

will yield 0 for a point on the surface of a sphere of radius

R centered on the origin. A negative value indicates a point

within the sphere and a positive value, exterior.

In 3-D, the most general second degree equation is:

Ax'+By2 +Cz'+Dxy+Exz+Fyz+Gx+Hy+Iz+J=0 (4-5)

Note that the terms have 3 formats, a constant times a

coordinate, a constant times a coordinate squared and a

constant times the product of a coordinate and a coordinate

value from another dimension. Generating the terms of the

expression for the vertices of a child obel using simple
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hmetic on parent values allows evaluation for vertic(s

iring only simple arithmetic. This can be accomplished

lustrated in Figure 4.6. In 4.6(a) the value of Gx'

ired for evaluation of the child vertices is desired as a

)le function of Gx from the parent. It is computed as

ows5:

Gx' - G(x+e) = Gx+Ge = Gx+G(2(m-n)) (4-6)

where m is the level of the lowest level in the universe

ere e-l) and n is the level of the child obel. The first

n is given and the second is a shift of the constant G.

s, a shift by m-n followed by an add will be sufficient.

In Figure 4.6(b) the value of Ax'' is desired from Ax

Axx. The value of Ax' will be needed later and is

culated as above. The Ax'" value can be evaluated by:

Ax't - A(x+e)2 - Ax2+2eAx+Ae2

= Ax2+(2(m-n+l))Ax+A(22 (m-n)) (4-7)

Two shift operations and two adds are required in

ition to the shift and add to compute Ax'.

More sophisticated objects involving third order

ations require Kx'3  as shown in Figure 4.6(c). The Kx'

Kx'' values are maintained as above with Kx' 3 calculated

follows:

Kx' 3 = K(x+e)3 = Kx3+2eKx2+e'Kx+eKx2+2e2Kx Kel

= Kx'+(2 (m-n+l) )Kx,+(22 (m-n) )Kx+( 2(m-n) )Kx2
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+(2 (2 (m-n)+l)) Kx+(2 3 (m-n))K (4-8)

Five additional shifts and adds are used for a total of

8 each for this term.

Two cross product terms are illustrated in Figure

4.6(d), Dx'y and Dx'y'. The first is computed from the

parent values of Dx, Dy and Dxy as follows:

Dx'y = D(x+e)y = Dxy+eDy = Dxy+(2(m-n))Dy (4-9)

A shift and an add are needed. The second is computed

by:

Dx'y' - D(x+e)(y+e) = Dxy+eDy+eDx+e 2D

= Dxy+(2(m-n) )Dy+( 2 (m-n) )Dx+(22 (m-n))D (4-10)

Three shifts and adds are needed.

Moving from points in space (vertices of the obels) to

consideration of the space occupied by the obel itself, three

simple tests can be performed to determine status. First, if

all vertex points of the obel are on or in the negative

half-space of the same face plane (at least one) there is no

intersection. For analytic surfaces a plane tangent to the

surface can be used to demonstrate non-intersection although

selecting such a plane may be difficult.

Second, if all vertex points are on the surface of, or

interie'r to the object, the obel is enclosed by the object.

For polyhedra, all vertices must be on or in the positive

half-space of all face planes.
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Third, if at least one vertex is interior to the object

and at least one vertex is exterior, the obel intersects the

object but is not enclosed.

unfortunately, not all situations are included in these

tests. For example, if there is at least one vertex on the

positive side of each face plane the test obel may or may not

intersect the object as shown in Figure 4.7 for 2-D. Obel 1

does not intersect while obel 2 does. Also, a case with all

vertex points exterior to the object is not necessarily

disjoint as shown by obel 2.

The concept of direction space will now be introduced.

This is a classification space in which vectors are assigned

membership by virtue of their direction in Euclidean space.

In 3-D there are 8 direction octants in direction space

corresponding to the 8 combinations of the signs of the three

axis displacement values for a vector. A displacement of 0

is of either sign. Every vector belongs to at least one

direction octant. Zero displacement assigns a vector to

multiple octants. Within a direction octant, all vectors can

be thought of as pointing in the same general direction.

They are within a 90 deg. range bounded by planes

intersecting pairs of axes and form an angle of 90 deg. or

less with each other.

The term critical vertex will be used to denote a single

vertex which can be tested to determine some characteristic

of the entire obel. Two critical vertex types are defined,
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the negative test vertex and the positive test vertex.

Because of the orthogonal orientation of obels, it is clear

that for each vertex, the vectors from the vertex to all

other points in the obel are all members of a single

direction octant (some also reside in other octants).

Every face plane has an associated negative test vertex

(in test obels being compared to it). It is the same vertex

in every obel and is determined by the orientation of the

plane. It is defined to be the vertex such that vectors from

it to any other point in the obel are members of the same

direction octant as the normal of the face plane.

For face planes parallel to an axis, the surface normal

resides in two direction octants. Two negative test vertices

are defined. For face planes perpendicular to an axis it

resides in four direction octants and four negative test

vertices can be identified.

The positive test vertex is defined in an identical

man-er using the negative of the surface normal (into the

positive half-space).

Assertion 4.5: For a face plane, if an associated

negative test vertex is on the plane or in its negative

half-space, the obel is disjoint from the object.

Proof: Consider the normal to the face plane. Clearly,

any vector from the surface or a point in the negative

half-space to a point in the positive half-space forms an

angle of greater than 90 deg. with the normal. Thus, a
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vector from the negative test vertex to an interior point

cannot be in the same direction octant as the normal. But

the vector from the negative test vertex to any obel point is

in the same direction octant. Therefore, no obel point can

be in the positive half-space. The obel is entirely in the

negative half-space. O

Similar reasoning shows the entire obel to be in the

positive half-space if the positive test vertex is on the

plane or in the positive half-space.

The above tests of obel status for convex objects are

summarized in Table 4.1. The first is the elimination of

obels exterior to the bounding box. The second determines no

intersection if the obel is entirely on the negative side of

a face plane or tangent plane. Test 3 finds enclosure if the

obel is on the positive side of each face plane.

Unfortunately, not all situations can be resolved by

these tests. The problem arises when the surface changes

direction octant membership as noted above in Figure 4.7.

Obels not resolved could be given a P value and subdivided

with an arbitrary decision made at the lowest level but a

non-zero false-P rate would result.

Before continuing, a restricted situation will next be

considered in order to simplify the analysis. A .restri.tj

regjon is a convex region of the universe in which all

surface normals are in the same direction octant. According

to the following assertion, for non-polyhedral objects test 2
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of Table 4.1 can be performed more easily if the test obel is

in a restricted region. The test obel is external if the

negative test vertex is simply external (a tangent plane does

not need to be found).

Assertion 4.6: For a test obel entirely within a

restricted region, if the negative test vertex is on the

surface of a convex object or external to the object, the

obel is disjoint from the object.

Proof: Generate a vector from the vertex to any point

interior to the object within the region. Since the region

is convex the vector lies entirely within the region with one

point on the surface of the object. Place a plane tangent to

the surface at this surface point. Since the surface point

is in the region, its surface normal must be in the same

direction octant as that used to determine the negative test

vertex. Clearly the vertex is on the tangent plane or in its

negative half-space. Since the tangent plane can be

considered to be a face plane of the object (in the limit),

from Assertion 4.5 the obel is disjoint from the object.

The following shows that in a restricted region, the

obel intersects if the negative test vertex is not found to

be in the negative half-space of any face plane in the

region.

Assertion 4.7: For a convex polyhedral object and for a

test obel entirely within a restricted region, if the
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negative test vertex is in the positive half-space of all

face planes in the region, the obel intersects the object.

Proof: First note that the vertex is not specified as

being in the positive half-space of all face planes in the

object, only those in the region.

Assume that the negative test vertex is on the surface

of the object or external to it. Select a point in the

region interior to the object. The line from the vertex to

this point is entirely interior to the region because it is

convex. Since the line intersects a face plane and continues

into the positive half-space the vertex must be in the

negative half-space of this particular face plane or on the

face, clearly a contradiction. The critical vertex must be

an interior point. O.E.D.

For non-polyhedral objects, the obel obvio-sly

intersects if the negative test vertex (or any obel point) is

not found to be exterior or on the surface of the object.

Applying the rules of Table 4.1, the 2-D situation is

found to be a special case as illustrated in Figure 4.8(a).

The false-P rate is zero.

Assertion 4.8: For a 2-D convex polygon, if the test

obel intersects the bounding box and for all edge lines the

associated negative test vertex is in the positive half-plane

(i.e., not on negative side of any edge line), the test obel

intersects the polygon.

Proof: Assume that the test obel does not intersect the 
0
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polygon. If the polygon is subtracted from the bounding box

as in Figure 4.8(b), four disjoint polygons (possibly empty)

called corner regions result. Since the test obel intersects

the bounding box but not the polygon, it must intersect one

of these four regions. It cannot intersect more than one

because the obel is convex and therefore a line connecting a

point in the intersection of both sections would be contained

entirely within the obel. This line must cross the polygon,

however, contradicting the assumption of no intersection.

One of the vertices must actually intersect the corner

region. It is sufficient to provide an algorithm to find it.

Select any point within the intersection area. Move in x

toward of the polygon until the obel edge is hit. From here

move along the edge in y toward the polygon. Before the

polygon is hit, another edge of the obel will be hit. This

point is the negative test vertex.

Note that a line between the two intersections of the

bounding box and polygon which define the corner region forms

a convex polygon, a triangle which encloses the corner region

and the associated edges. Since the object is convex, the

connecting segment is guaranteed to be on the surface of or

interior to the object. This is noted in Figure 4.8(c).

Also note that the edge normals for the enclosed edges are

all members of the same direction quadrant. This triangular

region thus forms a restricted region as defined above. The

associated negative test vertex is the above vertex (at least
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one of them) in the corner region.

With the negative test vertex in a corner region, the

test obel cannot intersect the edges which form another

corner region. This insures that the obel is entirely within

a region of uniform direction quadrant edges even though the

entire obel may not be entirely enclosed by the corner

region.

Drawing on Assertion 4.7, if the negative test vertex is

in the positive half-plane of all face edges in the region,

the obel intersects the polygon. This contradicts the

assumption that it does not intersect the polygon and proves

the statement. .Q.L.

This result is useful when creating 3-D objects by

layering 2-D slices and is also used later by the display

algorithm.

It would, of course, be desirable to somehow extend this

zero false-P result to 3-D. Consider the three orthogonal

projections of a polyhedral object and of the test obel along

the principal axes as shown in Figure 4.9(a). As can be seen

in Figure 4.9(b) the silhouette of the projection forms a

prism which encloses the object. The two face planes of the

prism are faces of the bounding box (extended in 4.9(b) for

clarity). All face planes are parallel to an axis.

Since the object is convex, the 2-D projection is

convex. If this were not so, two points could be found

within the object such that the line connecting them would
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not be entirely within the object. The prism is therefore

convex. Since it entirely encloses the object the three such

prisms will be called the bounding prisms.

Clearly, if for any of the axes, the projection of the

object (and therefore the bounding prism) is disjoint from

the projection of the obel, the object and the obel are

disjoint. For each dimension, the projection intersection

case can be determined by applying the above 2-D techniques.

Obviously, this test will eliminate some false-P cases

which would have a reduced value of E but will it eliminate

all? The answer is that it will.

Assertion 4.9: For a 3-D convex polyhedral object, if

(1) the test obel intersects the object's bounding box and

(2) the three orthogonal axial projections of the obel

intersect the corresponding projection of the object and (3)

for all object face planes the associated negative test

vertex is in the positive half-space, then the test obel

intersects the object.

Proof: Consider what will be called the bounding

D . It is the intersection of the three bounding prisms

and is a polyhedron built with face planes from the bounding

prisms. Note that all face planes of the bounding object

will be parallel to an axis. Five bounding entities have now

been defined, the bounding box, three bounding prisms and the

bounding object.

The proof will consist of two parts, first showing the
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test obel intersecting the bounding object and then the

object itself.

Assume that the test obel does not intersect the

bounding object. Since the projections of the obel and

object intersect, the projections of the obel and the

bounding prisms also intersect. Part of the bounding object

must therefore lie within the square projection of the test

obel for all three axes. Since it is assumed there is no

actual intersection, in each dimension the part of the

bounding object the projection of which intersects the obel

projection must lie in front of or behind the test obel.

There are eight such cases, corresponding to the positive or

negative direction for each of 3 axes. It will be sufficient

to analyze one case; the others are easily disposed of in

similar fashion.

Consider the case shown in Figure 4.10(a). The object

is in the positive direction relative to the test obel in all

3 axes. Part of the bounding object must exist in each of

the three volumes numbered 1 through 3. The numbered faces

are formed by face planes of the object bounding box.

Consider a translated set of axes centered on the

forward most vertex (vertex 7) of the test obel as shown in

4.10(b). Select a point in each of the three volumes that is

also within the bounding object and label them points 1

through 3 as noted.

Since all three points are within the bounding object,
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they must be in the positive half-space of all bounding

object face planes. Since the origin of the translated set

of axes is not interior to the bounding object, it must be on

or in the negative half-space of a face plane (at least one).

Now consider this face plane. It must be parallel to one of

the axes. Assume that it is parallel to the z axis. Its

projection on the x-y axis is shown in Figure 4.10(c). Note

that points 1, 2 and 3 are restricted to quadrants IV, II and

III, respectively.

Since points 1 and 2 must be in the positive half-space,

the projection must have a negative slope in the x-y plane.

Because of this and because the origin cannot be in the

positive half-space, the projection cannot intersect quadrant

III and the face plane cannot intersect volume 3. Thus point

3 cannot be on the positive side of the plane and such a

point cannot be in both volume 3 and the bounding object.

Similar arguments can be made for face planes parallel to the

x and y axes and for the other 7 arrangements of points 1

through 3 relative to the obel. This contradicts the

assumption and proves that the obel and bounding object

intersect.

The second part of the proof begins by noting that the

object itself separates a bounding prism into two (possibly

empty) parts. See Figure 4.11. Since the edges of the

projection correspond to actual object edges, the edges can

be connected with lines entirely within the object (it's
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convex) to form a surface (not necessarily planar and

possibly not unique) which completely separates the bounding

prism. If the object is removed from the bounding prism, two

disjoint subsets of the bounding prism remain. Clearly, no

line can intersect both subsets without crossing the surface

and therefore intersecting the object.

Next consider the object surfaces that touch these

subsets. Figure 4.12 shows an object edge between two object

face planes from different direction octants. A plane

parallel to the y axis is placed so as to intersect the edge.

Since it is tangent to a convex object, no part of the object

can exist in its negative half-space. Thus, its projection

on the x-z plane forms an edge of the projected polygon and

the plane is a face plane for the bounding prism parallel to

the y axis.

The change of sign of the y component of the surface

normals at an edge will always give rise to an edge in the

x-z plane. A vertical object face plane has a y component of

0 and will always form a projected edge. Two transitions

will form the same projected edge. Also note that if

multiple transitions occur across an edge, it will show up in

multiple projections.

Since the y transition edges will form the edges of

separation between the two bounding prism sections (with the

object removed), the object face planes in the upper section

(plus y in this case) must have positive y normal components.
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The lower section must have negative normal components. Fac-

planes with a zero y normal component are a face of the

object and a face of the bounding prism and are subtracted

out. They do not touch the remaining sections across a face.

Applying this in the two remaining axial directions, if

the object is subtracted from the bounding object, 8 sections

(possibly empty) remain. Within any one section, the faces

which correspond to an object face will all be of the same

direction octant. Also, because a separating surface exists

between every pair of corner regions, no line can intersect

two corner sections without intersecting the object.

The remainder of the proof parallels that for Assertion

4.8. The test obel is known to intersect the bounding

object. Assume that it does not intersect the object itself.

It must intersect but a single section of the bounding

object. If it touched more than one, a line entirely within

the obel could be drawn to connect the two sections, crossing

through the object and violating the non-intersection

assumption.

Next, the negative test vertex for the direction octant

for the touching object faces must be within the region. The

algorithm from the proof of Assertion 4.8 demonstrates this.

As above, since the negative test vertex for the section

is in the positive half-space of all face planes in the

region (a given) drawing on Assertion 4.7 the obel must

intersect the object. This contradicts the assumption that
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3 not intersect the object and proves the statement.

number of point-to-line distance computations must be

med to incorporate this test. For an E node, the

may be determined before this test. The minimum added

i E is thus zero. Otherwise some number of edge

ction lines must be compared to their associated 2-D

ive test vertices. Required for F and P nodes and worst

for E nodes would be a test for each axis of each edge

cting two face planes from different direction octants

i span the plus and minus signs for the normal vector

Dnents along the axis. This is the total number of edges

h appear in the 3 axial object projections. It is

ible for one edge to appear in all three projections.

that edges formed between 2 faces of the same direction

nt are not considered. A worst case upper bound of 3

s the number of edges can be set by assuming all edges

direction quadrants and all appear three times.

The total number of edges in a polyhedra can be related

he number of faces and vertices by examing Euler's Law

polytopes:

n. - n, + n2 + ... N-lnN 1  (-) N (4-11)

where ni is the number of entities of dimension i (n. W

ices, nI  a edges, n2 a faces, n3 - solids, etc.) and N

he number of dimensions.
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In 2-D (4-11) requires the number of vertices to equal

the number of edges. In 3-D, the following relationship

holds: edges = faces + vertices - 2

An upper bound for point-to-line calculations is thus:

3(faces) + 3(vertices) - 6

After the projection tests have been performed, the

vertex-to-plane tests may need to be performed. As with the

2-D case, all faces, rather than just those in a known

direction octant may require checking.

This technique cannot be directly applied to

non-polyhedral objects, however, because the negative vertex

test is not guaranteed to be correct unless the test vertex

is in a restricted region. This is not a problem for

polyhedra because the negative half-space of a face plane is

a restricted region.

One solution is to require that the universe containing

the object be able to be divided into 8 restricted regions.

Test obels will be required to be enclosed in a single

region. This would also facilitate polyhedral object

generation because only face planes in the region need be

tested.

A problem is the false-P rate. Using restricted

regions, the final node value will be correctly determined

from the tests but since a test obel must lie entirely within

a region, obels may be required to be subdivided along planes

separating the regions. An option in some situations is to
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further restrict objects to what will be called standard

form. The 8 regions are the 8 octants of the universe.

Except for the trivial case of a single node (F or E) octree,

no obel will be declared P and subdivided because it spans

multiple direction octants.

Many objects of general interest can be created by

transforming objects into desired instances using geometric

operations after they have been generated in standard form.

For a standard form polyhedron, the procedure is as

follows:

if CASE='DISJOINT ' in any dimension then STATUS<-'E' else
if DISTANCE(NEG_TESTVERTEX,PLANE)<-O for any plane PLANE

in direction octant then STATUS <- 'E' else
if DISTANCE(POS_TEST_VERTEX,PLANE)<O for any plane PLANE

in direction octant then STATUS<-'P' else STATUS<-'F'

The function DISTANCE(VERTEX,PLANE) returns the signed

perpendicular distance from vertex VERTEX to plane PLANE.

The first decision is based on the bounding box test

requiring a minimum of one comparison or a maximum of 2N if

true and always 2N if false. In the following analysis, it

is assumed that no face planes are perpend4cular to an axis.

Allowing them actually speeds up the algorithm because they

form part of the bounding box but complicates the analysis.

Empty nodes in an octant for which there are no

associated planer will be eliminated by the bounding box.

Thus, empty nodes which intersect the bounding box will

require a distance to plane computation to be performed at
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least once and possibly as many times as there are faces in

that direction octant (certainly less than the total number

of faces). An E node will therefore require a minimum of one

comparison with an upper bound of 2N magnitude comparisons

plus one vertex-to-plane distance computation for each face

in the octant.

For P or F nodes, all planes in the octant must have

been checked against the negative test vertex. A P node will

require a minumum of 1 additional check and a maximum of the

number of faces in the octant. An F node will always add a

distance computation for each face in the octant. The

requirements are summarized as follows:

- MINIMUM MAXIMUM-----
mag. vertex-to- mag. vertex-to-
compare plane compare plane

E 1 0 2N faces

P 2Y faces+1 2N 2(faces)

F 2N 2(faces) 2N 2(faces)

A lower bound for 3-D can be found by assuming that all

leaf nodes have a status of E. A lower bound of 13C/8 - 5/8

magnitude comparisons and C(faces)/8 - faces/8 + C/8 - 1/8

vertex-to-plane distance calculations performed where the

value of "faces" can be taken to be the minimum number of

faces in an octant. All F leaf nodes can be assumed in order

to find an upper bound. This gives 6C magnitude comparisons

and 2C(faces) vertex-to-plane distance calculations where
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faces can be taken to be the maximum number of faces in an

octant or the total number of faces (if a breakdown by

direction octant is not available) for a worse but still

valid upper bound.

For convex analytic objects in standard form, the

following procedure will generate no false-Ps:

if CASE = 'DISJOINT' in any dimension
then STATUS<-'E' else
if SURFACETEST(NEGTESTVERTEX)='EXTERIOR'

for all direction octants
then STATUS<-'E' else
if SURFACETEST(POSTEST_VERTEX)-'INTERIOR'

for all direction octants
then STATUS<-'F' else STATUS<-'P'

The first decision is, again, the bounding box test.

The second is a check ("SURFACETEST') to see if the negative

test vertex as specified by the octant of the obel is outside

the object (including the surface). An E node requires a

minumum of 1 magnitude comparison and a maximum of 2N

magnitude comparisons plus one surface test. A P or F node

requires this maximum plus a second surface test.

Taking all leaf nodes to be E, a lower bound of 13C/8

magnitude comparisons plus C/4 surface tests is required. If

all leaves are taken to be F, an upper bound of 6C magnitude

comparisons and 2C surface tests will be required.

67



4.2.3 Object Generation Examples

x am2l . 1: Generate the octree for the half-space

defined by Ax + By + Cz + D - 0.

Snlution: The positive (interior) half-space will be

the side containing points which are at a positive distance

from the plane when the defining equation is evaluated.

First the root node is created and its address pushed on

a node address stack. The distances for the vertices of the

universe are generated from (4-3), placed in vector DIST and

passed to procedure HALFSPACE (see below).

The vertex numbers of the critical vertices have been

predetermined and are contained in constants POS_TEST_VERTEX

and NEGTEST_VERTEX.

As the procedure continues, if the positive test vertex

is in the positive half-space, the obel is enclosed and the

associated node is marked F by procedure NEWNODE. If not,

the negative test vertex is checked to detect an E node. If

neither is the case, a vertex exists on either side of the

boundary, resulting in a P node. Procedure NEWNODE creates

the children and attaches pointers to the node. The

addresses of the children are pushed on the node address

stack (in reverse sequence order) for later use. HALFSPACE

is then called to evaluate the children. Procedure

CHILD-DIST calculates the vertex-to-plane distance vector for

a child based on the parent values, using (4-4).

68

hL_ _ _ _



The procedures generalized to N-dimensions are outlined

as follows. Maintenance of a tree depth value and forced

node termination at the lowest desired level have been left

out for brevity.

procedure HALFSPACE(DIST)

vector_ 2N DIST
if DIST(POS-TESTVERTEX) >= 0 then NEWNODE('F') else
if DIST(NEGTEST-VERTEX) <- 0 then NEWNODE(EI) else

begin
NEW_NODE('P)
for CHILD <- 0 step 1 until 2N-1 do

HALF-SPACE(CHILDDIST(DIST,CHILD))end

procedure NEW_NODE(STATUS)
/* Pop node address and attach STATUS. Attach 2

unmarked child nodes and push addresses on
stack in reverse order if 'P'. */

procedure CHILDDIST(DIST,CHILD)
/* Returns distance vector for child CHILD of

parent distance vector DIST. */

69



Fxa I.--4.2: Generate the octree for a sphere of radius

R centered on the center of the universe.

Soluton: The sphere contains all of the points at a

distance less than R from the center of the universe defined

by:

ds a (X-Xc)' + (Y-Yc)2 + (z-zc)' (4-12)

Determining the value of d for obel vertices is not

easily performed with simple arithmetic but the individual

terms of (4-12) and therefore d' are easily computed using

(4-7) with A-i. Since squared positive numbers are

monotonically increasing, and both d and R are positive,

d'<R 2 if d<R. Thus d' can be compared to the radius squared

to determine if a particular vertex is interior or exterior

to the sphere.

A procedure similar to HALF_SPACE called SPHERE is

presented below. The distance vector now holds the distance

values squared and is called DISTSQ. The radius squared is

in constant RADSQ. Procedure CHILDDISTSQ computes the

terms of (4-12) based on (4-7) and sums them to compute the

distance squared values for the child vertices.

The vertex distances are all initialized to 3e'/4 where

e is the length of an edge of the universe. A few items have

been neglected in SPHERE. First, the 8 octants of the

universe correspond to the 8 direction octants and contain

different critical vertices. New values for POS_TEST_VERTEX
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and NEGTESTVERTEX are needed at the 7 times during

algorithm operation when the level I node is changed. Also,

a mechanism is needed to force the root to be a branch node

since it (and it alone) spans direction octants.

The DISTSQ vector must be expanded to maintain the

component and component squared values. Bottom level node

termination has again been neglected.

Procedure SPHERE is as follows:

procedurl SPHERE(DISTSQ)
vector_2 DIST-SO
if DIST_SQ(POSTESTVERTEX)<-RADSQ then NEWNODE('F') else
if DISTSQ(NEG_TESTVERTEX)>-RAD_SQ then NEWNODE('E') else

begin
NEW_NODE('P')
for CHILD,-0 step I until 2N-1 do

SPHERE (CHILDDISTSQ (DIST,CHILD))
end

E Generate the octree for a cylinder of radius

R centered along a line through the center of the universe

parallel to an axis.

Soltion. Procedure SPHERE can be employed if

CHILDDISTSQ is simply modified so that the term of (4-12)

in the direction of the centerline is eliminated. The

vertices of the universe are initialized to a value of e'/2.
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4.2.4 Concave Objects

Most of the intersection tests developed above are

invalid when dealing with concave objects. About the only

rules which can be employed are the bounding box test and a

determination of intersection if a vertex point is internal

and another is external. The given method of

interior/exterior determination is invalid for concave

polyhedra, however.

Given the current state of development, the strategy for

concave objects should probably begin by attempting an

indirect generation. Some objects can be decomposed into

multiple convex objects. After generating the parts, they

are unioned together. The set operations of intersection,

difference and negation could also be employed. Many

interesting objects can also be created by sweeping a convex

object.

If a concave object is reasonably well behaved, some

general strategies can be developed. The following are only

guidelines in that bizarre objects can often be envisioned

which would cause problems. Included are zero thickness

places or surface wraparound creating unknown interior holes,

etc.

A few additional testing capabilities must be added. It

is assumed that an interior point (any point) within the

object can be easily found. A method must be provided to
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determine if a point is interior or exterior. This is not

generally as simple as for convex objects. A popular

technique is to extend a line from the point to a known

exterior point. If the line cuts the surface an odd number

of times, the point is interior. Some way must also be found

to determine if the surface of the object cuts the surface of

the obel. This is often simplified because obel surfaces are

planes perpendicular to an axis.

Given this and if the object is bounded, encloses

volume, has no interior holes and no disjoint parts, the

following procedure can be used:

if surface of object cuts test obel then STATUS <-'P' else
if any obel vertex interior to object then STATUS<-'F' else
if any object point interior to obel then STATUS<-'P'
else STATUS<-'E'

In the first test, if the object cuts across the obel

surface, they intersect but the obel is not enclosed. This

assumes that the surface is legitmate, separating the

interior and exterior. For the second test, since the

surfaceu, don't cut each other, obel enclosure is tested. We

can pick any obel point, a vertex being convenient. If

inside the object, it should be completely enclosed since no

interior holes are allowed. For the third test a check is

made for the opposite condition, the object enclosed by the

test obel. Any point in the object is tested for enclosure

by the obel. If so, it is a partially enclosed node. If

not, the object and obel are disjoint.
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If interior holes and disjoint parts are allowed, a

method of determining if any part of the surface is within

the test obel is needed. The following general procedure can

be followed:

if any surface of object interior to test obel
then STATUS<-'P' else
if any obel vertex interior to object
then STATUS<-'F' else STATUS<-'E'

The first test checks if any part of the object surface

is within the obel. If yes, there is partial intersection.

If not, the obel is either completely enclosed or completely

disjoint. Any obel point such as a vertex is used to decide.

For both of the above concave object procedures a zero

false-P rate can be expected for well behaved objects but

sbme tests may be difficult to perform.

4.3 Object Properties

One of the strong advantages of Octree Encoding relative

to other SMSs is the efficiency of object property

measurement. This is a consequence of spatial pre-sorting.

In an actual system the real-time generation of mass

properties should not be difficult to achieve.

Of the following, volume, surface area and separation of

disjoint parts are 3-D extensions of published quadtree

techniques.
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4.3.1 Volume

The volume of an octree object is easily calculated by

simply counting the number of F leaf nodes at each level,

multiplying by the volume of an obel at that level and

summing. If an error tolerance is allowed, the levels can be

examined from the root until the expected value of the volume

is within limits. A minimum and maximum volume is

calculated. Only F nodes are summed into the minumum while P

modes are also summed into the maximum.

4.3.2 Surface Area

The surface area of an octree is determined by checking

the face neighbors of each F node. If the neighbor is E, the

area of the face is summed into the surface area. If a

neighbor is P, the F node is subdivided into 8 children with

a status of F which are then processed.

This method computes the surface of the octree object,

not the original input (real) object (or input objects used

to create it). If a more precise measurement is needed,

analytic surfaces could be fitted to the octree object or

perhaps the application data base could be examined.
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4.3.3 Center of Mass

If an object with uniform density is divided into n

regions, no two of which overlap, having volumes VI, V2,..

Vn and centers of mass (x1,.x2,1, .. XNl), ... (X l,n

x N, ), the object center of mass, (xl1x2, ... xN) can be

calculated as follows:

n n
xi - SuM(Vjx ij)/SUM(V)I (4-13)

1 j-l 1 J j=l

Clearly, F obels are the needed disjoint regions for an

octree object with the obel centers being the center of mass.

The centers can be generated using only simple arithmetic as

shown above. Because the edge size of an obel is a power of

2, the volume is a power of 2. The multiplication by obel

volume can therefore be performed by shift operations.

In operation, the center of mass algorithm maintains two

variables for each dimension, corresponding to the numerator

and denominator of (4-13). For each F node, the center is

multiplied (via shifts) and summed into the numerator. The

volume is summed into the denominator. After all nodes have

been processed, the variables are divided to obtain the

center of mass components.

As with the volume calculation, a maximum error can be

calculated and compared to a user supplied value so

computation terminates when within tolerance.
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1.4 Moment of Inertia

The moment of inertia, I, is defined as follows:

n 2I = S[UM(M.R.2R (4-14)i=l
where Mi is the mass of a particle of mass i and Ri is

ie perpendicular distance from the particle to the axis of

)tation.

For a homogeneous octree, the mass of an F node is

roportional to the volume and is, again, a power of 2,

lowing the multiplication to be performed by shifts. The

istance squared value is easily computed using simple

rithmetic, as noted above, if the axis of rotation is (or

as been made through rotation) parallel to a coordinate

ystem axis.

A problem arises, however, because of the nonlinearity

f the distance squared. The above formula assumes point

asses. Errors result it the center of a distributed mass is

sed. This is minimized by subdividing the F nodes down to

ower levels before performing the summation.

An approximation to the moment of inertia is thus easily

omputed with simple arithmetic by summing the product over F

,odes or their (forced) implied children.
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4.3.5 Segmentation of Disjoint Parts

It is sometimes desirable to separate an octree

containing multiple disjoint parts into multiple octrees, one

for each part. The algorithms which have been developed to

perform segmentation check each face between F obels. A

table is kept of object numbers. If an F node is discovered

which has not already been given an object number, the face

neighbors are checked for object numbers. If none are

numbered, it and the full neighbors are given a new number

that's also entered into the table. If, among the neighbors,

there is a single object number, it is given to the obel and

any unnumbered neighbors. If the node and its neighbors have

been given conflicting numbers, equivalence pairs are

generated. When all F nodes have been processed, a second

phase resolves the equivalence pairs and a third phase

attaches the final labels. The nodes can be separated into

multiple octrees by phase three.

4.3.6 Interior Voids

To obtain the number of interior voids in an object, it

is negated and then segmented into its disjoint parts. The

number is generally the number of parts minus one. The part

external to the object can usually be determined because it

touches a vertex of the universe. It could be deleted,
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leaving just the negated interior voids as solid objects.

A space filling operation is performed if one or more of

the negated interior sections is unioned back into the

original object.

4.3.7 Correlation

A measure of the correlation between two objects can be

determined by calculating the fraction of a volume containing

the objects which has the same status (E or F) in both

objects. The measuring volume would typically be the

bounding box of the union of the two objects. This measure

of correlation would then be:

(volume((A n B) n BOX) + volume(A fl B))/volume(BOX) (4-15)

where A anO B are the objects and BOX is the bounding

box.

4.4 Boolean Operations

The Boolean operations are the "regularized" operators

111]. An intersection must contain volume, for example.

Thus the intersection of two 3-D objects that touch along a

surface is the null set. Conveniently, this is the normal

result of the tree manipulation operations presented here.

Algorithms that perform the Boolean operations of union,
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intersection and difference have been developed for quadtrees

[12] and are directly extendable to 3-D octrees. They are

not repeated here for brevity. It is simply noted that

simultaneous traversal of multiple trees visits the same

perfectly aligned sections of space in each object. The

status values can be examined during traversal to generate

the output status values.

The negation operation can be performed by simply

changing all F nodes to E and vice versa. If performed

often, algorithms could optionally negate the interpretation

of leaf values. No node values would need be changed.

4.5 Overlays

The sections which follow will outline more advanced

techniques for performing transformations and operations such

as translation, scaling, rotation, swept volume generation,

interference detection and display. If there is one tool

that forms a spine through most of these algorithms, that

tool would be the overlay. From an implementation viewpoint

its importance would be difficult to overstate.

An overlay is a set of contiguous nodes at a single

level, drawn from an input tree, that is guaranteed to

spatially enclose an associated obel, the target obel, from

another tree, usually an output tree being generated. By

examining the overlay, a decision (perhaps not a final
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decision) can be made as to the status of the associated

node.

The overlay can be thought of as a template containing a

number of obels which cover a section of space. Within any

overlay there is a single obel in a fixed location relative

to the overlay such that if the origin of the target obel is

within it, the target obel is covered by the overlay. The

shape of the overlay, the number of obels it contains, the

level of its obels relative to the level of the target obel,

etc. depend on the specific algorithm. By maintaining a set

of active neighbors, the overhead of pointer chasing through

the tree in order to examine neighbors is reduced.

From a computational growth viewpoint the savings are

not significant because the expected value of the average

traversal length required to locate a neighbor is a constant

[13]. From an implementation viewpoint, however, the savings

can be substantial because far fewer memory references are

needed. Also, the maximum length of time whicth need be

allowed for a processor to generate and evaluated a

sub-overlay is greatly reduced.

Operating une-r the self-imposed restriction of only

simple arithmetic the essential idea behind most of the

following algorithms is to set up an imagionary output tree

and then proceed to examine its obels for spatial

interference with the input tree or trees. By examining

intersecting obels a status value can be given to the output
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node. The most basic primitive operation that must be

performed is interference detection between the output node

and the nodes in the input tree. If a high level of overall

performance is to be expected, obviously this must be

performed very efficiently.

Conventional CSG systems perform an interference test

between an object and a single primitive in a second object

by mathematically comparing the primitive to each primitive

in the first object. Depending on the results needed,

processing may stop if an intersection is found. If the

exact nature of the interference is required or if no

intersection is found, the number of comparisons is equal to

the number of primitives in the first object. For a complete

determination of intersection between the two objects, the

number of primitive pair checks can equal the product of the

primitive counts in the two objects. For similar objects,

interference detection is quadratic in object complexity.

Because the number of cubes in an octree can be expected

to be much larger than the number of primitives in an

approximately equivalent object in CSG format, quadratic

growth would seem to insure extremely poor relative

performance. It is at this point that the admitedly large

effort and expense of using and maintaining a spatially

pre-sorted data structure comes to fruition. It is not

necessary to check all nodes in the input tree when the

status of an output tree node is needed. Only those which
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can possibly intersect that node, i.e., those in its overlay,

are tested. In the following algorithms, these nodes are

fixed in number and easily determined. Thus, the number of

tests is limited to the product of a fixed, usually small,

number and the value of C for the output tree. The overlay

is simply a convenient and efficient logical structure in

which to keep track of them within an algorithm (or within a

processor).

Advantage cannot be taken of this technique in most

current SMS because the primitimes are not and usually cannot

be spatially pre-sorted.

In 3-D a set of 8 obels all of which touch at a point

will always completely enclose a randomly located target obel

of the same size or smaller if orthogonally oriented (not

rotated). The overlay associated with the target obel thus

contains information concerning 8 obels (the overlay obels).

The overlay data for each item may contain a pointer to a

node in the input tree or could contain the status value of

the terminal node from a higher level which contains the

associated space.

Two tools are needed to evaluate the status of the

target obel. First, the overlay obels which actually

intersect must be determined and second, a status decision

must be drawn from the status values of the intersecting

ones. The first depends on the specific algorithm and can

become quite involved. The second is simple. If all 4
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intersecting nodes have the value F, the node for the target

obel can safely be given a status value of F. The same is

true for the status value E. Otherwise, the target obel is

subdivided and each of its children processed in like manner.

At the lowest desired level a terminal value is forced.

Another tool is needed to generate a sub-overlay for a

specific child of the target obel. Since the overlay

encloses the parent, it and some subset of its children (the

children of its overlay obels) cover the child. Also, by

definition, the overlay covers the target obel regardless of

its location or orientation (as allowed by the algorithm) and

therefore a sub-overlay containing the same number of obels

as the overlay is guaranteed to cover the child target.

Thus, the sub-overlay is identical in structure to the

overlay with the new overlay obels being drawn from the set

of children of the overlay obels.

Sub-overlay generation begins by determining the origin

of the new target. Since it must be within a specific

overlay obel, the exact enclosing child of the overlay is

determined. The selection of the remaining sub-overlay obels

is fixed by the structure.

The entire operation is easily performed using simple

arithmetic. In practice, it is usually a table driven

operation indexed by the relative distance between the origin

of the overlay and the origin of the new target.

Information concerning the output node and the overlay
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are passed from the parent to the children through a queue

for breadth-first traversal or a stack for depth-first

traversal.

4.6 Geometric Operations

The geometric operations are among the most basic SMS

functions needed. For translation, scaling and rotation, an

informal description of the algorithm will be described. The

formal procedures are presented in 151.

4.6.1 Translation

The goal of the translation algorithm is to convert a

tree representing an N-dimensional object and a movement

vector into a new tree representing the translated object.

The movement vector specifies a translation value to some

precision, i.e. at some level for each dimension. An

informal description of the algorithm follows.

The process begins by generating an augmented overlay

universe composed of the "old" universe containing the

original object and a number of empty universes. It is put

together so the "new" universe containing the translated

object is covered by the old universe. The translation

vector specifies the alignment of the new universe relative

to the old.
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Beginning with the root of the new universe, the basic

strategy is to traverse the implied tree for the new object

and generate node values as outlined above while traversing

the tree representing the old universe. If a terminal value

for a node in the new tree is generated, no descendants of

that node need be considered. If an ambiguity exists and,

therefore, the status cannot be resolved, a P node is

generated and its children are generated using the same

procedure. The overlay obels present a picture of the

section of the old universe that covers the new obel. They

can be at any level relative to the target obel. The lower

they are below the target, the more numerous but the more

accurate the result (lower false-P rate). The output tree

will be more nearly the final reduced tree. This comes at an

increase in memory use and computation. The translation

algorithm normally uses an overlay with 2N obels at the same

level as the corresponding obel in the new universe.

Figure 4.13(a) illustrates the overlay in one dimension.

Distance is positive to the right. Three obels are shown.

The target obel has an edge distance of e. Its lower end is

the local origin. The overlay is made up of two adjacent

obels of the same size from the old universe connected at the

overlay center. The offset value is the distance from the

local origin to the overlay center. The value of offset is

limited to 0<-offset<e.

The orthogonal block techniques from the object
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generation sections above are used to determine intersection.

The target obel corresponds to the convex object and the

overlay obels the test obels. One difference is that the

target obel does not remain fixed for all time. It

subdivides. This presents no problem because the

point-to-edge or point-to-plane distance values are easily

updated for target subdivision using the techniques for test

obel subdivision. The edges and faces of target obel

children are parallel to the parent edges and faces.

Figure 4.13(b) shows the configuration of a

2-dimensional overlay. The 8 overlay cubes and the target

cube for 3-D translation are illustrated in Figure 4.14.

As generated, node by node, the output tree will be

correct but will not, in general, be identical to the reduced

tree. False-P nodes will be generated when a target node

later determined to be F or E intersects a target obel of

status P. If a reduced tree is needed, a second pass

reduction phase is required.

4.6.2 Scaling

Scaling an object by a power of two in all dimensions is

accomplished by adding or deleting levels at the root. An

object is halved in each dimension by adding one level at the

top. The new root points to one branch node, the old root,

and 2N-I empty terminal nodes. The scaled down universe can
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be located in any of the first-level obels in the new

universe.

In like manner, selecting one of the first level nodes

to be a new root doubles the size of everything within it.

To double the size of an arbitrary section of space, it is

translated into a first level obel which is then expanded to

fill the new universe.

Objects can be expanded or reduced by any power of two

by, in effect, repeated expansion or reduction by a factor of

2. These scaling operations can be accomplished by

manipulating a very small number of nodes at the top of the

tree. The vast bulk of the data values are left unchanged.

Scaling by a factor other than a power of 2 is

accomplished using an overlay scheme similar to that used for

translation. The target obel, however, may be smaller than

the overlay in one or more dimensions. In addition, a single

set of offset values cannot be used. The offset vector must

be computed independently for each child of the target obel.

4.6.3 Rotation

Rotation by 90 degrees about an axis can be performed by

a simple reordering of the nodes in the tree. For an octree,

if the center of rotation is the center of the universe,

rotation by 90, 180 or 270 degrees or reflection across a

plane through the center parallel to a face of the universe
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or oriented at 45 degrees is accomplished by reordering or,

within an algorithm, a change in the traversal sequence.

For rotation about an arbitrary point, the object is

translated to the center of the universe, rotated, and

translated back.

Rotation by an arbitrary angle is somewhat more

difficult. In 2-D, the overlay arrangement for a 0 to 90

degree rotation is shown in Figure 4.15. Nine overlay obels

are required. The local origin of the target obel is always

in overlay obel B. Clearly, for 0 deg. to 90 deg.

rotation, the target will be covered by the overlay in

dimension 1. In dimension 2, the maximum reach of the target

is I + SQRT(2) which is less than 3, the height of the

overlay. Coverage is thus guaranteed.

Again, the techniques from the object generation

sections are used to determine overlay obel intersection.

For an arbitrary 3-D object rotation, three operations

could be performed using a slightly modified 2-D algorithm,

one for each axis. An even simpler method is to perform

multiple skew operations. This approach may be generally

undesirable, however, because at the lowest levels aliasing

products are generated on the object surface when nodes are

forced to be terminal. The object is essentially being

redigitized from a previously digitized object. This tends

to corrupt the surface and is compounded by the repeated

operations that are required. This is minimized by computing
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nodes to lower levels, by performing operations in a single

pass and by regenerating instances of an object from the

original octree model each time it is moved or changed

(rather than incremental movement of a single object).

Because of this, 3-D rotation in one pass is preferred.

This is accomplished by extending the 2-D scheme into 3-D by

the use of a 4 by 4 by 4 overlay.

The necessity for 4 rather than 3 overlay obels per

dimension is illustrated in Figure 4.16. The maximum

distance between two points in the target obel is the length

of a diagonal through the cube or SQRT(3) (about 1.7)

assuming an edge size of 1. The origin is restricted within

a range of 1 unit in each dimension. The overlay must span 4

units, however, because the origin is not guaranteed to be at

an end of the projection width. If located within, a

distance on either side of the centering obel must be

allowed. In the diagram, distance A to the left of the

center projection must be allowed and B to the right. In the

case shown, the value of A is less than B and therefore less

than 1. A single unit to the left is sufficient. The value

of B could, however, be greater than 1, requiring two units

to the right. For the case shown, the origin is located in

the overlay obel labeled F. Depending on the location of the

origin within the projection, the origin could be restricted

to any of the center four, F, G, J or K.
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i.4 Concatenated Geometric Operations

Using homogeneous coordinates [14] any number of

quential linear operations (x' = Alx + Bly + CI, y' = A2x +

y + C2 ) can be concatenated and reduced to a single matrix

coefficients (3 by 3 for 2-D or 4 by 4 for 3-D). This, of

urse, includes the geometric operations of translation,

:aling and rotation. The composite transformation can then

performed in a single matrix multiplication. This can be

ipressed as follows for 2-D:

[x'' l]1 (4-16)
Ix"Y~ll = Exry,] B A B2 0B2 C2I1 C 2 1

Reversing for the moment the direction of data flow in

n overlay operation (the target obel will now 'generate" the

verlay) the above concatenated transformation will be

erformed if a parallelogram shaped target obel is used as

hown in Figure 4.17. The target universe is assumed to be

f unit edge length. The matrix coefficients determine its

ocation, orientation and shape.

The C coefficients specify the location of the origin of

he universe. The A coefficients determine the length and

lope of the lower and upper edges relative to the overlay

hile the B coefficients determine the left and right edges.

he original universe containing point (x,y) is showr

igure 4.18(a). In 4.18(b), the transformed x va>.f

hown. The C1 value gives the origin offset. 7e
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specifies the fraction of the lower edge of the target

universe spanned between the origin and the projection of the

point on that edge. Since the projection of the edge on the

x' axis is A1, this displacement, when projected on the x'

axis is Aix.

The value of y is similarly the projection on the left

edge which projects a distance of B1 on the x' axis. The x'

component due to the value of y is thus shown to be Bly. The

value is the sum of the three components or x' = A x + Bly +

C1 . The value of y' is computed in like manner as y' = A2x +

B2 y + C2.

For a universe with a non-unit edge, the matrix

coefficients are simply multiplied by the edge value to

generate the target universe parameters.

The matrix product for concatenated linear

transformations in 3-D can be expressed as follows:

(A1 A2 A3 01(x',y',z1 ,lI (x,y,z,l] B1 B2 B3 0 (4-17)
C1 C2 C3 0
D D2 D3 1

The geometric values for the target obel used to perform

equivalent transformations are shown in Figure 4.19. An

additional dimension is added to account for the new terms

and the third equation.

Returning to the original data flow from overlay to

target obel, the new obel is generated from the overlay when

it is deformed according to the inverse of the coefficient
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matrix.

The target obel is subdivided as outlined in Figure 4.20

(a) through (c). The distance values needed to determine

overlap can be easily updated using previous techniques

because the edges and faces of the children are parallel to

those of the parent. If the relative tree level difference

between the target obel and overlay obels is fixed, the

number and arrangement of overlay obels in the overlay cannot

be fixed unless some restrictions are placed on the matrix

coefficient values. An alternate strategy that has been

successfully applied in practice is to fix the overlay

configuration and to force subdivide the target obel at

algorithm initialization until coverage is guaranteed.

4.6.5 Nonlinear Transformations

The parallelogram target overlay s.ieme can be

generalized to a quadralateral in order to accomodate

nonlinear transformations of the form:

x' - Aix + Bly + C1 + Dlxy (4-18)
y' -A 2x + B2 Y +C 2 + D2 xy

Figure 4.21(a) shows the required target shape. Reverse

flow from target to overlay is again assumed.

Calculation of the x' value is illustrated in Figure

4.21(b). The C1 and Aix terms are as before. When the value

of y is considered, however, it can be noted that the shift
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to the right due to y will vary linearly with x over a range

from 0 to B, at the left side (x-0) to 0 to B1 + D1 at the

right side x-l). The y component is thus y(B1 + Dix) or the

remaining required two terms of Bly + Dlxy-

In 3-D the transformations can be expressed as follows:

x' - A1x+Bly + C1z + D1 + E1xy + F1xz + Glyz

y = A2x+B2y + C2 z + D2 + E2xy + F2xz + G2yz (4-19)

z' - A3x+B3Y+C3z+D3+E3xy+F3xz+G 3yz

The locations of the vertex points of the target obel

are shown in Figure 4.22. The coefficient subscripts from

(4-19) have been deleted for clarity. The subscripts are

simply the directional displacement for the indicated vertex

points (l-x', 2=y', 3-z'). The origin, for example, is

located at x'-D , y'=D 2, z'=D 3.

The location of the vertex points of the children of the

target obel can be calculated using simple arithmetic as

noted in Figure 4.23 for 2-D. A problem arises, however,

when determining intersection. The child edges and faces are

no longer guaranteed to be parallel to the equivalent parent

edges and faces. Except for special cases, intersection has

not been found to be easily determined using only e

arithmetic.

A special case is shown in Figure 4.24. The left and

right edges are parallel to the y axis. The equivalent edges

in its children will also be parallel to the y axis. A new
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scheme is employed to determine if an overlay obel vertex

point is on the positive or negative side of an edge line.

For each overlay the intersection point between the target

edge lines and vertical lines through overlay obel vertices

is maintained. In Figure 4.24 points A and B are two such

points. The location of the vertex point relative to the

intersection points determines its half-plane. Because the

vertical line is parallel to the left and right edges, the

new intersection point for a child, point C in the diagram,

is simply the average of the two parent values. The only

remaining problem is computing the intersections for vertical

lines through the new vertex points created when the overlay

obels are subdivided. Because the new vertical lines will be

half way between the parent lines, the new intersections are

also the averages of the parent values.

Another problem arises in 3-D. In the linear case, the

faces of the target obel are determined by 3 points in space

and are therefore co-planar. In the nonlinear case, more

degrees of freedom are available; all four points can be

located independantly. The face is not necessarily planar.

It may be a ruled surface between two segments of lines in

space.
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4.6.6 Perspective Transformation

In order to avoid the division required in generating a

perspective display, the objects can be deformed so as to

appear as if in a perspective view when an orthographic

projection is used.

For the situation in Figure 4.25(a), an object with a

height of y at a location x units from the observer should be

ustretched" to a height of y' units according -to the

following:

y'/x - y/x or y' - YXs/x (4-20)

For simplicity, let xs - 1. Thus, y' reduces to:

y, - y/x (4-21)

The triangular shaped target obel shown in Figure

4.25%b) will perform this transformation. The value of y' is

the fraction of the vertical distance from the base of the

target obel to the upper edge of the target obel at which the

point (x,y) resides. It is y divided by the vertical

distance. For this target shape it is equal to x. In the

target universe the y' value is thus measured as y/x as

required for a perspective deformation.

A more general situation is outlined in Figure 4.26(a).

The viewpoint is located at (xvy v ) relative to the origin of

the object universe. The screen is located at an x value of

xv. The universe edge size is e. A point (x,y) will be
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transformed according to the following relation:

X,- x

(y'-yv)/(xs-x v ) - (y-yv )/(x-x v )

or

Y' - Yv + (Xs-xv)(Y-yv)/(X-xv) (4-22)

An overlay to perform this transformation is presented

in Figure 4.26(b). The distances are as follows:

a - v1 + Xv/(Xs-Xv))

b - a - eyv/(xs-Xv )v (4-23)
c - Yv - Xv(e-yv?/(xs-xv)

d - c + e(e-Yv)/(xs-x v )

A point (x,y) in the overlay will be transformed into a

point (x',yl) in the universe of the target as follows. As

the value of x changes from 0 to e, the u value of the bottom

edge of the target will vary linearly from a to b. It can

thus be expressed as:

a - (x/e)e(y v/(x s-x)) - a - xY v/(xs-X ) (4-24)

The top target edge can likewise be found to be:

c + x (e-Yv /(xs-xv )  (4-25)

The height in the overlay universe of the target as a

function of x is the top edge value minus the bottom or:

[c + x(e-y )/(xs - xv )) - [a - xyv/(xs-x v )]

which, after substitution for the values of c and a

reduces to:
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• (x-x v )/ (Xs-Xv (4-26)

The value of y above the bottom edge is:

y - [a - XYv/(Xs-X v ]  (4-27)

The transformed value will be this vertical distance

divided by the vertical height of the target for this value

of x times the size of the universe (e) or:

y' - ((y-(a-xy/(xsx ) ) )/(e(x-xv)M xsxv)M e

" Yv + (xs-Xv) (Y-yv)/(X'xv) (4-28)

which matches the required transformation from (4-22).

An interesting property of the transformation is that

only those sections of the old universe which will fall

within the new universe and therefore (presumably) the field

of vision of the observer, are examined in detail. Parts

which clearly will fall outside the transformed universe are

eliminated at the upper levels. Again, this is a benefit of

spatial pre-sorting.

It should be noted that in practice, it may very well be

more advantageous to provide a division operation capability

within the display algorithm and directly perform a

perspective transformation rather than compute the deformed

object for each display frame.
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4.7 Swept Volume

In applications such as NC tape verification and

collision avoidance as a part of trajectory planning in

robotics systems, the "object* formed by the volume swept out

by an object in motion is of major importance. An octree

swept volume algorithm should be able to accept an object in

octree format together with a curve in space and generate the

swept object in octree format in a single pass.

The following is the "rotational" swept volume

algorithm. The object is rotated in a fixed body movement

about a line in space parallel to an axis.

4.7.1 Rotational Swept Volume

A typical rotational sweep is shown in Figure 4.27. It

is assumed that an arbitrary angle of rotation can be

specified; the angle is not restricted to discrete values.

Most 3-D problems can be handled as an extended 2-D case

about a vertical axis.

An immediate difference vis-a-vis previous situations

where obel locations are computed within an algorithm, is the

change in sweep distance for an obel as a function of its

distance from the axis of rotation. It is also obvious that

the input obels and output obels are no longer in perfect

alignment. One is rotated with respect to the other as the
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sweep progresses. A multiple obel overlay approach will

therefore be employed.

The strategy is outlined in Figure 4.28. In 2-D, a list

overlays each containing 9 obels will be maintained for each

output obel. The center obel of the overlay will be one

which intersects the center of the output obel. The center

of output obel A, for example, is within the sweep of the

center overlay obel. It is therefore added to the list. As

shown by output obel B, all neighbors which could intersect

are included. Clearly, if all such overlays are in the list,

all input obels having a sweep that could intersect the

output obel, are examined. Obels in one overlay may, of

course, appear in other overlays. For this reason, the

overlays will contain pointers to a common location for a

particular node and its associated information in order to

conserve storage and to prevent multiple computation of the

same information.

If any overlay is found to completely cover the output

obel with swept input obels with the value F, the output node

is marked F. All attached overlays can then be deleted. If

all intersecting nodes are found to be empty (E), the overlay

is deleted. If a final determination cannot be made on the

basis of the overlays in the list, they are subdivided and

the appropriate child overlays attached to the children of

the output node for consideration at the next lower level.

The most difficult part of the operation is determining
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the intersection situation between the output obel and the

swept overlay. The situations are divided into two classes,

those not involving the ends of the sweep and those that do.

The former is considered first.

An obel swept around an axis sweeps out a hollow

cylinder or a part of one as shown in Figure 4.29(a). The

two vertex points which are at the most distant and closest

points sweep the edges of the cylinder. Their starting

distances from the center of rotation, R, and R2 are the

exterior and interior radius values, respectively. The

cylinder is essentially swept out by a line between these two

vertices (neglecting endpoints). Note that the orientation

of the obel changes as it moves. The two vertex points are

determined by the starting quadrant relative to the center of

rotation as shown in Figure 4.29(b).

As shown in Example 4.3 above, calculating the distance

squared from the center of rotation for each vertex of an

obel can be calculated using simple arithmetic from parent

values. The same is true for the output obels. In 3-D, this

is also true if the center of rotation is parallel to an

axis. In fixed situations it might be possible to so orient

the coordinate system. Otherwise, the object can be rotated

into position or more complex arithmetic can be allowed.

Some of the obel intersection techniques developed for

octree object generation above will be employed. Most

require that the test obel be guaranteed to be within a
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section containing surface point normals from a single

direction octant. To simplify matters, it will be assumed

that the axis of rotation will be through the center of the

universe. This will force all obels (except the root) to be

within a restricted region.

For a single band, the output obel intersection test is

illustrated in Figure 4.30. Two convex objects are involved,

section B, the area below the inner edge, and A + B, the area

below the outer edge. If the negative test vertex for the

direction octant is beyond the outer edge, there can be no

intersection. This case is R2. >- R'. If the positive test

vertex is within B (R2ax <- Rt), the obel is entirely within

the B section, and no intersection with the band can exist.

If the negative test vertex is beyond the inner edge (Rin <=

RI), and the positive test vertex is within the outer edge

(R2 <- R2), the obel is entirely within the band.

Otbrwise there is partial intersection.

It is, in general, unreasonable to expect that an output

obel will be entirely enclosed by a band caused by a single

obel. Thus the need for a multiple obel overlay. The

procedure is to analyze the bands of the 9 overlay obels.

They will typically overlap. They are simply consolidated

into disjoint bands of solid and empty. If the obel is

entirely enclosed by a solid band, an F value can be given.

If it does not intersect a solid band, this overlay is

discontinued. If a partial intersection exists, a P value is
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issued and the overlay subdivided.

The second class of intersection, those involving the

endpoints of the sweep, can be analyzed in a number of ways.

The methods developed above to determine the intersection

between a test obel and an object can be utilized. The test

obel is the output obel and the object is the swept overlay.

An obel can be eliminated from consideration for

intersection if it is outside the bounding box or is beyond

or entirely within the radius values of the sweep. After

this, the tests not involving end conditions can be easily

identified. In Figure 4.31 they are the obels found to be

entirely within the region shown above and to the right of

the dotted lines. The remaining obels require more extensive

testing.

As shown by the case in Figure 4.31, the vacinity of the

starting location can be divided into two parts, the

triangles formed by vertex points 1, 3 and 4, and the sweep

of the line between vertices 1 and 3 rightward. Note that

the swept line always starts out at a 45 deg. angle. At the

ending location, the sweep ends with a rotated square. It

can be divided into two parts, the triangle formed by points

1, 2 and 3, and the leftward sweep of line segment 1 to 3.

In all cases the 1 to 3 diagonal line will be at a particular

angle, a displacement from 45 deg. of the sweep angle.

Information about a line at this angle can be precomputed.

The location of vertex points at the end location can be
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easily computed using simple arithmetic from the the starting

points. The values Ax, Ay, Bx and By are maintained for each

point where x and y are the distance from the center of

rotation, A - cos(T), B - sin(T) and T is the sweep angle.

They are calculated from the parent values using (4-6). The

rotated coordinates are then simply x' = Ax - By and y' = Bx

+ Ay.

Unfortunately, it is not simple to calculate the

perpendicular distance to a common point using simple

arithmetic because the distance changes with radius. The

determination of the side of a line upon which a test vertex

of the output obel lies is probably easiest calculated by

(reluctantly) allowing a single multiplication operation per

test.

Briefly, the previously developed intersection methods

can now be used. Two tests are performed, one for the end

triangle and the second for the sweep with the diagonal line

used as an additional edge. One problem remains.

Intersection is easily determined but enclosure may be over

several sweeps and end triangles. The solution is to also

check for intersection with the non-swept regions. If none

is found, the output obel is enclosed.
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No. A a~L~ tau

1 no intersection with bounding no intersection
box

2 neg. test vertex on or in neg. no intersection E
half-space of associated face
planes (any tangent plane for

non-polyhedral object)

3 pos. test vertex on or in pos. enclosed F
half-space for all face planes
(all vertices on surface or
interior for non-polyhedral)

Table 4.1 - Convex Object Tests
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Object

(a) 2-D Object

Dimension 2

Vertex 2 Vertex 3

2 3

0 
Dimension I

Vertex 0 Vertex 1

(b) Child and Vertex Labeling

Level 0

2p

Level I E (

Level 2 E F E)

Level 3 E F E E

(c) Quadtree Representation of 2-D Object

Figure 3.1 Sample Quadtree



I

Dimension 2
Vertex 2 3 3 Vertex 3

Vertex 6 - Vertex 7

Note: Child 0 and Dimension 1
Vertex'D (the 4 5 Vertex 1
origin) are
hidden

j Vertex 4 Vertex 5
Dimension 3

(a) Child and Vertex Labeling

Figure 3.2 Sample Octree



(b) 3-D Object

Le0e 41 42 43 4

(c) Octree Representation of 3-D Object

Figure 3.2 (Continued) Sample Octree



Node Request/Response

Octree Octree Stack
Processor Generator or

all- Queue

Preload
(Object parameters and
traversal information)

Figure 4.1 Octree Generator
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y

(x0,Yl)
(xl 'Yl) Yl

YP child y

Parent Y0+Y1 2yl

Obel 2 child child
YO 1 0 1

{Xl -Yo)  YO
(x0,Y0),' ,

, ,,

x 0  2x0 1

(a) Parent (b) Children

Figure 4.2 Calculation of Child Vertex Coordinates from Parent Values.



y Test Obel #1 (No Intersection, Status=E)

TetNot Enclosed, Status=P)
o t E n c ( I n e r scdou

y max Orthogonal

- I #3

- _ _ _(Enclosed,

SttsF

.1m -

x minxma

z max

Figure 4.3 Octree Generation for 3-D Orthogonal Block



Test Obel

Object

I *I

Object_Mn Obel_Mn ObJectMax ObelMax

Figure 4.4 Projections of Test Obel and Object on
Axis of Dimension m



Obel-to-Object Compare
No. Limits Min:Max Max:Min Max:Max Min:Min Example Case

I IA
1 None < < < < I IB disjoint

I IA

2 None > > > > lIB disjoint

I IA
3 None = <IIB disjoint

I IA
4 None => > > _ IB disjoint

I IA

5 IAI<IBI < > <= I _ IB covered

IhIA
6 IAI<IBI < > < > I IB covered

I IA
7 IAI<JBI < > => I _ B covered

I IA

8 IAI=IBI < = I _ IB covered

I IA
9 None < > << l IB overlap

I IA
10 IAI>IBI < > < I-IB overlap

I IA
11 IAI>IBI < > < I __ IB overlap

I IA
12 IAIMIBI < > > = IB overlap

I IA
13 None < > > > I IB overlap

Figure 4.5 Possible Combinations of Obel and Object Projections

(with ObelMin < Obel_Max and ObjectMin < ObjectMax)I



Gx Gx'

e -4- e

k- child * child -W

P- parent

(a) Given Gx, calculate Gx'

Ax2  Ax'2

Ax Ax'
i I !Px

(b) Given Ax and Ax2, calculate Ax' and Ax'
2

Kx3  Kx 3

Kx2  Kx' 2

Kx Kx'
i I I -

(c) Given Kx, Kx2 and Kx3, calculate Kx', Kx
'2 and Kx'3

Dy'

yDx'y

Dy Dx,
Dxy Dx'y

y

x X

(d) Given Dx, Dy and Dxy, Calculate Dx', Dy',
Dx'y and Dx'y'

Figure 4.6 Generation Terms for Child Obel from Parent Values



Object

Obel #1 x

x Obel #2

Figure 4.7 Example of Obel Status Values not Determined by
Table 4.1 Tests (for both obels there is at least
one ve tex on positive side of every lace edge).



: - z Test Obel

Bounding Box

Object

(a) Bounding Box and Test Obel

(b) Corner Areas

(c) Corner Region

Figure 4.8 2-0 Convex Polygon with Bounding Box

- - -------- ---



y

z (a) Projections of Object

Bounding Prism

z ~(b) Bounding Prism (1 of 3)

Fiyure 4.9 Bounding Prisms



Face 2 .~ IZZh~

Vol ume 2 o m

Test Obel Face 1

(a) Volumes Containiag Parts of Bounding Object

Figure 4.10 Analysis of 3 Bounding Object Points



INMI

y

i 2Vertex 7 (origin of
translated set of axes)

Test Obel x

Point 1

z#

4  -.. Po i nt 3

(b) Translated Set of Axes and 3 Bounding Object Points

.!

Quadrant II Point 2 Quadrant I
,.Posi tive Direction

Point 3 '- - -- -6 Point 1

Quadrant III Projection of Face of
Bounding Object on x-y Plane

Quadrant IV

(c) Projection of 3 Bounding Object Points on x-y Plane

Figure 4.10 (Continued) Analysis of Three Bounding Object Pairs

L. 
j



(a) Bounding Prism

Separating Surface• I
(b) Two Disjoint Sections of Bounding Prism

Figure 4.11 Separation of Bounding Prism
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I
I



Pl ane A

Face Plane of
BoundingPrism in ypyan

direction (plane
parallel to y
axis)

Edge between two planes
from different direction

xt

Projection of edge on
x-z plane

Figure 4.12 Projection of Edge Between Planes in Different Direction Octants



Overlay Center

Overlay Obel #0 Overlay Obel #i

,OVERLAY
(from old

e universe)

I NEW OBEL

Local Origin

r Offset Distance

(a) One-Dimensional Overlay

OIMENSION 2 Overlay Obel #2 Overlay Obel #3

OVERLAY
Origin (from old

Overlay universe)

,,nNEW OBEL

Offset in

LocalOrigin

Overlay Obel PO Overlay Obel *I

S- !IMENS:ON 1
Offset In1

Dimension I

(b) Two-Dimensional Overlay

Figure 4.13 Overlay Structure
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Target
Obe 1

Offset in~

/ Offset in Dimension 3 Offset in Cimensicn I
-Dimension I

Figure 4.14 Three- Dimens ional1 Overlay
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_ _ Target Obel

• --Local Origin of Target

Local Origin of Overlay

Figure 4.15 Rotation Overlay
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Target Obel

A B'C __ ___Origin

~a -b

A Note: a+b has max of SQRT(3) or
about 1.73

Center

Figure 4.16 Projection of 4 by 4 by 4 Overlay for 3-D Rotation
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Figure 4.17 Target Obel for Concatenated Geometric
Transformation



0 x 1-

(a) Universe Before Transformation

(x,y) in old

uni verse

Origin

x

h- x'=A~xByC
(b) Generation of Transformed x Value

Figure 4.18 Transformed Coordinate Value



Projection of Target Obel

B

TT -

T Ori gin 

D 2 A 1  ,'l

(a) Projection of Target Obel on x'-y' Plane

Dx

Z Projection of

3 Target Obel1At
Z
I

(b) Projection of Target Obel on x'-z' Plane

Figure 4.19 Target Obel for 3-0 Concatenated Geometric Transformation
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(a) Level 1 Children

y

x

(b) Level 2 Children

y
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(c) Level 3 Children

Figure 4.20 Subdivision of Target Obel for Concatenated
Geometric Operations
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(a) Target for Nonlinear 2-D Transformation

Ily

HCi ~Aix

B- 8y+Dl xy

(b) Calculation of x' A AX + B iY + C1 + DI xy

Figure 4.21 Nonlinear Transformation
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Figure 4.24 Special Case of Nonlinear Transformation Overlay Target
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Figure 4.25 Target Obel for Perspective Transformation



-*-Z - Viewscreen
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"-Center of Viewscreen
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(a) Transformation

I.
I

Target Universe Overlay Universe

TT

\Origin of Target Universe

Origin of Overlay Universe

(b) Target Obe"

Figure 4.26 Generalized Perspective Transformation



Figure 4.27 Rotational Sw~eep
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Figure 4.29 Obel Sweep
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